
Acta Numerica (2008), pp. 87–145 c© Cambridge University Press, 2008

doi: 10.1017/S0962492906350015 Printed in the United Kingdom

Accurate and efficient expression

evaluation and linear algebra

James Demmel∗

Department of Mathematics and Computer Science Division,

University of California, Berkeley, CA 94720, USA

Ioana Dumitriu†

Department of Mathematics, University of Washington,

Seattle, WA 98195, USA

Olga Holtz‡

Department of Mathematics,

University of California, Berkeley, CA 94720, USA

and

Department of Mathematics, Technische Universität Berlin,

D-10623, Berlin, Germany

Plamen Koev§

Department of Mathematics, North Carolina State University,

Raleigh, NC 27695, USA

We survey and unify recent results on the existence of accurate algorithms for
evaluating multivariate polynomials, and more generally for accurate numer-
ical linear algebra with structured matrices. By ‘accurate’ we mean that the
computed answer has relative error less than 1, i.e., has some correct leading
digits. We also address efficiency, by which we mean algorithms that run in
polynomial time in the size of the input. Our results will depend strongly on
the model of arithmetic: most of our results will use the so-called traditional

model (TM), where the computed result of op(a, b), a binary operation like
a+ b, is given by op(a, b)∗ (1+ δ) where all we know is that |δ| ≤ ε ≪ 1. Here
ε is a constant also known as machine epsilon.

∗ Supported by NSF grants CCF-0444486, CNS 0325873, by DOE grant DE-FC02-
06ER25786, and by the University of California, Berkeley, Richard Carl Dehmel Dis-
tinguished Professorship.

† Supported by the Miller Institute for Basic Research in Science.
‡ Supported by the Sofja Kovalevskaja programme of the Alexander von Humboldt Foun-

dation.
§ Supported by NSF grants DMS-0314286, DMS-0411962 and DMS-0608306.

88 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

We will see a common reason for the following disparate problems to permit
accurate and efficient algorithms using only the four basic arithmetic oper-
ations: finding the eigenvalues of a suitably discretized scalar elliptic PDE,
finding eigenvalues of arbitrary products, inverses, or Schur complements of
totally non-negative matrices (such as Cauchy and Vandermonde), and eval-
uating the Motzkin polynomial. Furthermore, in all these cases the high
accuracy is ‘deserved’, i.e., the answer is determined much more accurately
by the data than the conventional condition number would suggest.

In contrast, we will see that evaluating even the simple polynomial x+y+z
accurately is impossible in the TM, using only the basic arithmetic operations.
We give a set of necessary and sufficient conditions to decide whether a high-
accuracy algorithm exists in the TM, and describe progress toward a decision
procedure that will take any problem and provide either a high-accuracy
algorithm or a proof that none exists.

When no accurate algorithm exists in the TM, it is natural to extend the
set of available accurate operations by a library of additional operations, such
as x + y + z, dot products, or indeed any enumerable set which could then
be used to build further accurate algorithms. We show how our accurate
algorithms and decision procedure for finding them extend to this case.

Finally, we address other models of arithmetic, and the relationship be-
tween (im)possibility in the TM and (in)efficient algorithms operating on
numbers represented as bit strings.

CONTENTS

1 Introduction 88
2 Accurate and efficient algorithms for linear algebra 92
3 Accurate algorithms for polynomial evaluation 103
4 Other models of arithmetic 136
5 Structured condition numbers 138
6 Conclusions 141
References 142

1. Introduction

A result of a computation will be called accurate if it has a small relative
error, in particular less than 1 (i.e., some leading digits must be correct).
Now we can ask what the following problems have in common.

(1) Accurately evaluate the Motzkin polynomial

p(x, y, z) = z3 + x2y2(x2 + y2 − 3z2).

Accurate, efficient expression evaluation and linear algebra 89

(2) Accurately compute the entries or eigenvalues of a matrix obtained
by performing an arbitrary sequence of operations chosen from the set
{multiplication, J-inversion, Schur complement, taking submatrices},
starting from a set of totally non-negative (TN) matrices such as the
Hilbert matrix, TN generalized Vandermonde matrices, etc.

(3) Accurately find the eigenvalues of a suitably discretized scalar elliptic
PDE.

We also ask how they all differ from the apparently much easier problem of
evaluating x + y + z.

The answer will depend strongly on our model of arithmetic. For most
of this paper we will use the traditional model (TM) of arithmetic, that the
computed result of op(a, b), a binary operation such as a + b, is given by
op(a, b) · (1 + δ), where all we know is that |δ| ≤ ε ≪ 1. Here ε is a real
constant also known as machine precision. We will refer to rnd(op(a, b)) ≡
op(a, b)(1+δ) as the rounded result of op(a, b). We will distinguish between
the cases where the other quantities (including δs) are all real, or all complex.

To see why some expressions may or may not be evaluable accurately
in the TM, consider multiplying or dividing two numbers each known to
relative error η < 1: then their rounded product or quotient is clearly
correct with relative error O(max(η, ε)). This also holds when adding two
like-signed real numbers (or subtracting real numbers with opposite signs).
In contrast, subtracting two like-signed real numbers x − y can lead to
cancellation of leading digits. If x and y themselves have non-zero relative
error bounds, then depending on the extent of cancellation, x− y may have
an arbitrary relative error. On the other hand, if x and y are exact inputs,
then rnd(x± y) = (x± y)(1 + δ) is also known with small relative error. In
other words, an easy sufficient (but not necessary!) condition in the TM for
an algorithm to be accurate is ‘no inaccurate cancellation’ (NIC).

NIC. The algorithm only (1) multiplies, (2) divides, (3) adds (resp. sub-
tracts) real numbers with like (resp. differing) signs, and otherwise
only (4) adds or subtracts input data.

Sometimes we will also include the square root among our allowed operations
in NIC.1

In the TM, with real numbers, the three problems listed above all have
novel accurate algorithms that use only four basic arithmetic operations (+,
−, × and /), comparison and branching, and satisfy NIC. Furthermore, the
matrix algorithms are efficient, running in O(n3) time (we say more about

1 However, square roots require more care in bounding the relative error. In floating-

point arithmetic on most computers, computing y = x1/2100

by 100 square roots and

then z = y2100

by 100 squarings yields z = 1 independently of x > 0.

90 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

0 5 10 15 20
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

Eigenvalue index

Accurate
Conventional

Figure 1.1. Eigenvalues of the 20th Schur complement of the
40-by-40 Vandermonde matrix Vij = ij−1, computed both using
a conventional algorithm (×) and and accurate algorithm (+).

efficiency below). These linear algebra algorithms depend on some recently
discovered matrix factorizations and update formulas, and the algorithm for
the Motzkin polynomial (surprisingly) fills a page with 8 cases. In contrast,
with complex arithmetic, no accurate algorithms exist; nor is there an ac-
curate algorithm using only these operations, in the real or complex case,
for evaluating x + y + z accurately.

For example, consider Figure 1.1, which shows the eigenvalues of a matrix
obtained by taking the trailing 20-by-20 Schur complement of a 40-by-40
Vandermonde matrix. Both the eigenvalues computed by our algorithm (in
standard double-precision floating-point arithmetic), and by a conventional
algorithm are shown. Note that every eigenvalue computed by the con-
ventional algorithm is wrong by orders of magnitude, whereas all ours are
correct to nearly 14 digits, as confirmed by a very high-precision calculation.

Section 2 of this paper will survey a great many other examples of struc-
tured matrices where accurate and efficient linear algebra algorithms are
possible using NIC as the main (but not only) tool; see Table 2.1 for a
summary.

One may wonder whether this accuracy is ‘overkill’, because small un-
certainties in the data might cause much larger uncertainties in the com-
puted results. In this case, computing results to high accuracy would be
more than the data deserves, and not worth any additional cost. Indeed,
the usual condition numbers of the problems considered here are usually
enormous. However, their structured condition numbers are often quite

Accurate, efficient expression evaluation and linear algebra 91

modest, justifying computing the answers to high accuracy. For exam-
ple, while a Cauchy matrix Cij = 1/(xi + yj) such as the Hilbert matrix
(xi = i = 1 + yi) is considered badly conditioned since κ(C) ≡ ‖C‖ · ‖C−1‖
can be very large, the entries of C−1 are actually much less sensitive func-
tions of xi and yj than κ(C) would indicate. Indeed, if the answer is given by
a formula satisfying NIC, then the condition number can only be large when
cancellation occurs when computing x±y for uncertain input data x and y;
each such expression adds the quantity 1/rel gap(x, y) ≡ (|x| + |y|)/|x ± y|
to the structured condition number. This is true of all the examples in
Section 2, justifying their more accurate computation than would the usual
condition number.

The profusion and diversity of these examples naturally raises the ques-
tion as to what mathematical property they share that makes these al-
gorithms possible. Section 3 of this paper addresses this, by describing
progress towards a decision procedure for the more basic problem of decid-
ing whether a given multivariate polynomial can be evaluated accurately
using the basic rounded arithmetic operations, comparison, and branching.
The answer will depend not just on the polynomial, but whether the data
is real or complex, and on the domain of evaluation (a smaller domain may
be easier than a larger one, if it eliminates difficult arguments). This deci-
sion procedure would yield simpler necessary and sufficient conditions (not
identical in all cases) that tell us whether the algorithms in Section 2 (or
others not yet discovered) must exist (we will use the fact that accurate
determinants are necessary and often sufficient for accurate linear algebra).
It will turn out that the results for real arithmetic are much more compli-
cated than for complex arithmetic, where simple necessary and sufficient
conditions may be stated (the answer is basically given by NIC above); this
reflects the difference between algebraic geometry over the real and com-
plex numbers.

One negative result of Section 3.3 will be the impossibility of evaluating
x + y + z using only the basic rounded arithmetic operations. This seems
odd, since x + y + z is so simple. But it is only simple if we use the fact
that in practice (floating-point arithmetic), x, y and z are represented by
finite bit strings that can be manipulated and analysed differently than by
assuming only that rnd(op(a, b)) = op(a, b)(1 + δ) with |δ| ≤ ε. To go
further we must extend our model of arithmetic. We do so in two ways.

Section 3.4 continues by adding so-called ‘black-box’ operations to the
basic arithmetic operations. For example, one could assume that a sub-
routine for the accurate evaluation of x + y + z (or of dot products, or of
3-by-3 determinants, etc.) also existed, and then ask the analogous ques-
tion as to what other polynomials could be accurately evaluated, using this
subroutine as a building block. This indeed models computational practice,
where subroutine libraries of such black-box routines are provided in order

92 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

to build accurate algorithms for other more complicated polynomials. In
Section 3.4 we also describe how to extend our decision procedures when
an arbitrary set of such black-box routines is available, and the question is
whether another polynomial not already in the set can be evaluated accu-
rately. A positive result will show that just the ability to compute 2-by-2
determinants accurately is enough to permit accurate and efficient linear
algebra on the inverses of tridiagonal matrices. A negative result will be the
impossibility of accurate linear algebra with Toeplitz matrices, given any

set of block-box operations of bounded degree or with a bounded number
of arguments.

Sections 3.3 and 3.4 go some way to describing the possibilities and lim-
its of solving numerical problems accurately in practice. But ‘in practice’
means using finite representations with bits, i.e., floating point, in which
case accurate (even exact) polynomial evaluation is always possible, and the
only question is cost. In Section 4, after a brief discussion of other arith-
metic models, we will settle on one model we believe best captures the spirit
of actual floating-point computation, but without limiting it to fixed word
sizes: an arbitrary pair of integers (m, e) is used to represent the floating-
point number m · 2e. In this model, we describe how the algorithms in
Section 2 lead to efficient algorithms that run in time polynomial in the size
of the inputs, the usual computer science notion of efficiency. In contrast,
conventional algorithms, when simply run in high enough precision to get
an accurate answer, do not run in polynomial time.

Finally, in Section 5 we consider the structured condition numbers for
the problems we consider, which can be much smaller than the usual un-
structured condition numbers and so justify accuracy computation. In prior
work (Demmel 1987), the first author observed that for many problems the
condition number of the condition number was approximately equal to the
condition number of the original problem, and that this corresponded to
the geometric property that the condition number was the reciprocal of the
distance to the nearest ill-posed (or singular) problem. These observations
apply here, with the following interesting consequence: for the examples
considered here it is possible to compute the solution to a problem accu-
rately if and only if it is possible to estimate its condition number accurately.
An analogous phenomenon was observed in Demmel, Diament and Mala-
jovich (2001).

2. Accurate and efficient algorithms for linear algebra

2.1. Introduction

The numerical linear algebra problems we will consider include computing
the product of matrices, the Schur complement, the determinant or other
minor, the inverse, the solution to a linear system or least-squares problem,

Accurate, efficient expression evaluation and linear algebra 93

and various matrix decompositions such as LDU (with or without pivoting)
QR, SVD (singular value decomposition), and EVD (eigenvalue decompo-
sition).

Conventional algorithms for these problems are at best only backward

stable: when applied to a matrix A they compute the exact solution of a
nearby problem A+ δA, where ‖δA‖ = O(ε)‖A‖, where ‖ · ‖ is some matrix
norm and ε is machine epsilon. In consequence, the error in the computed
solution depends on how sensitive the answer is to small changes in A,

and is typically bounded in norm by ‖δA‖
‖A‖ κ(A) = O(ε)κ(A), where κ(A) is a

condition number (a scaled norm of the Jacobian of the solution map). Thus
we have two ways to lose high relative accuracy: First, bounding the error
only in norm may provide very weak bounds for tiny solution components;
for example the error bound for the computed singular values guarantees
an absolute error |σi,true − σi,comp| = O(ε)maxi σi,true, so that the large
singular values have small relative errors, but not the small ones. Second,
when κ(A) is large, even large solution components may be inaccurate, as
when inverting an ill-conditioned matrix.

However, these conventional algorithms ignore the structure of the matrix,
which is critical to our approach. Rather than treating, say, a Cauchy
matrix C as a collection of n2 independent entries Cij = 1/(xi + yj), we
treat it as a function of its 2n parameters xi and yj . Starting from these 2n
parameters, we can find accurate expressions (because they satisfy NIC) for
C’s determinant det(C) =

∏
i<j(xi − xj)(yi − yj)/

∏
i,j(xi + yj) and other

linear algebra problems. As mentioned in Section 1, expressions satisfying
NIC also imply that their structured condition numbers can be arbitrarily
smaller than their conventional condition numbers.

Now we outline our general approach to these problems. First we consider
the problems whose solutions are rational functions of the parameters, such
as computing a determinant or minor. Indeed, all these solutions can be
expressed using minors or quotients of minors. For example, the entries of
the inverse or LDU factorization are (quotients of) minors, the product AB
can be extracted from

I A 0
0 I B
0 0 1

−1

,

and the last column of

I A −b
AT 0 0
0 0 1

−1

contains the solution of the overdetermined least-squares problem
minx ‖Ax − b‖2. Thus the ability to compute certain minors with high

94 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

relative accuracy is sufficient to solve these linear algebra problems with
high relative accuracy. Conversely, knowing a factorization such as LDU

with high relative accuracy yields the determinant with similar accuracy
(via the product ±

∏
i Dii). Thus we see that matrix structures that per-

mit accurate computations of certain determinants are both necessary and
sufficient for solution of these linear algebra problems with high relative ac-
curacy. In this section we will identify a number of matrix structures that
permit such accurate determinants to be calculated.

Second, we consider the EVD and SVD, which involve more general al-
gebraic functions of the matrix entries. To compute these accurately, we
need other tools, which we will summarize below in Section 2.2. Briefly, our
approach will be to compute one of several other matrix decompositions
using only rational operations (and possibly square roots), and then apply
iterative schemes to these decompositions that have accuracy guarantees.

Efficient conventional algorithms (i.e., using O(n3) arithmetic operations)
exist for each of the above problems and are available in free packages (e.g.,
LAPACK (Anderson et al. 1999)) or embedded in commercial ones (e.g.,
MATLAB (The MathWorks 1992)). So an extra challenge is to find not
just accurate algorithms, but ones that also take O(n3) operations.

Our results, using only NIC, are summarized in Table 2.1, which describes
(in a O(·) sense) the speed of the fastest-known accurate algorithm for
each problem shown. There is one column for each linear algebra problem
considered, and one row for each structured matrix class. The abbreviations
not yet defined will be explained as we continue.

The rest of this section is organized as follows. Section 2.2 briefly presents
accurate algorithms for the EVD and SVD. Section 2.3 walks through Ta-
ble 2.1 row by row, again briefly explaining the results. Finally, Section 2.4
explains how much more is possible if we expand the class of formulas we
may use beyond NIC in a certain disciplined way. This naturally raises the
question of whether or not there is a systematic method to recognize such
formulas, which is the final topic of this paper.

2.2. Tools for computing EVD and SVD accurately

2.2.1. Rank-revealing decompositions and SVD

The first accurate SVD algorithm depends on a rank-revealing decomposi-

tion, or RRD (Demmel et al. 1999), of matrix A, a factorization A = XDY
where D is non-singular and diagonal, and X and Y T have full column
rank and are ‘well conditioned’. Note that A may be rectangular or sin-
gular. The most obvious example of an RRD is the SVD, where X and
Y are as well conditioned as possible. Other examples where X and Y are
(nearly always) well conditioned come from Gaussian elimination with com-
plete pivoting A = LDU , or from QR with complete pivoting A = QDR;

Accurate, efficient expression evaluation and linear algebra 95

more sophisticated pivoting techniques with better condition bounds on
the unit triangular factors are available (Chan 1987, Chandrasekaran and
Ipsen 1994, Gu and Eisenstat 1996, Hong and Pan 1992, Hwang, Lin and
Yang 1992, Miranian and Gu 2003, Stewart 1993). An RRD A = XDY has
two attractive properties, as follows.

(a) Given the RRD, it is possible to compute the SVD to high relative
accuracy in the following sense (Demmel et al. 1999, Section 3, Demmel
and Koev 2001, Algorithm 2).

• The relative error in each singular value σi is bounded by

O(ε max(κ(X), κ(Y))),

where κ(X) = ‖X‖ · ‖X‖−1.

• The relative error in the ith computed (left or right) singular vector
is bounded by

O(ε max(κ(X), κ(Y))/ min
j �=i

rel gap(σi, σj).

In other words, the condition number can only be large if the singu-
lar value agrees with another one to many leading digits, no matter
how small they are in absolute value.

(b) These error bounds do not change if the RRD is known only approx-
imately (either because of uncertainty in A or round-off in computing
the RRD), as long as (Demmel et al. 1999, Theorem 2.1, Eisenstat
and Ipsen 1995, Li 1999):

• we can compute X̂ where ‖X − X̂‖ = O(ε)‖X‖,

• we can compute a diagonal D̂ where |Dii − D̂ii| = O(ε)|Dii|,

• we can compute Ŷ where ‖Y − Ŷ ‖ = O(ε)‖Y ‖.

In other words, we only need the factors X and Y with high absolute
accuracy, not relative accuracy, a fact that will significantly expand
the scope of applicability.

Among the various algorithms cited above for computing the SVD, we sketch
one (Demmel et al. 1999, Algorithm 3.2), along with an explanation of its
accuracy.

(1) Compute the SVD of XD using one-sided Jacobi, yielding XD =
Ū Σ̄V̄ T . Thus A = Ū Σ̄V̄ T Y .

(2) Multiply W = Σ̄(V̄ T Y), respecting parentheses. Thus A = ŪW .

(3) Compute the SVD of W using one-sided Jacobi, yielding W = ¯̄UΣV T .

Thus A = Ū ¯̄UΣV T .

(4) Multiply U = Ū ¯̄U , yielding the SVD A = UΣV T .

96 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

Briefly, the reason this works is that in steps (1) and (3), which potentially
combine numbers over very wide ranges of magnitude, one-sided Jacobi
respects this scaling by, in step (1) for example, creating backward errors
in column i of XD that are proportional to Dii (Demmel and Veselić 1992,
Drmač 1998, Mathias 1996). Furthermore, each step costs O(n3) arithmetic
operations.

2.2.2. Bidiagonal SVD

The second accurate SVD algorithm depends on a bidiagonal reduction (BR)
of matrix A, a factorization A = UBV T where B is bidiagonal (non-zero
on the main and first super-diagonal) and U and V are unitary. This is
an intermediate factorization in the standard SVD algorithm. If the entries
of B are determined to high relative accuracy, so is B’s SVD in the same
sense as the RRD determines the SVD as described above (but without any
factor like max(κ(X), κ(Y)) in the error bounds). Furthermore, accurate
O(n3) algorithms are available (Demmel and Kahan 1990, Parlett 1995).

2.2.3. Accurate EVD

Now we discuss the EVD. Clearly, if A is symmetric positive definite, and
a symmetric RRD A = XDXT is available, then the SVD and EVD are
identical. If A is symmetric indefinite but an accurate SVD is attainable,
then the only remaining task is assigning correct signs to the singular val-
ues, which may be done using the algorithms of Dopico, Molera and Moro
(2003). Algorithms for computing symmetric RRDs of certain symmetric
structured matrices are presented in Koev and Dopico (2007) and Peláez
and Moro (2006).

We also know of two accurate non-symmetric eigenvalue algorithms, for
totally non-negative (TN) and for certain sign-regular matrices, which we
call TNJ (see Section 2.3.6 for definitions).

In the TN case, the trick is to implicitly perform an accurate similarity
transformation to a symmetric tridiagonal positive definite matrix which is
available to us in factored form. The TN eigenvalue problem is thus reduced
to the bidiagonal SVD problem.

The sign-regular TNJ matrices are similar to symmetric anti-bidiagonal
matrices (Holtz 2005) (i.e., the only non-zero entries are on the antidiagonal
and one sub-antidiagonal). This similarity can be performed accurately by
transforming implicitly an appropriate bidiagonal decomposition of the TNJ

matrix. Finally, the eigenvalues of the anti-bidiagonal matrix are its singular
values with appropriate signs known from theory.

2.3. Designing accurate algorithms for different structured classes

In this section we look at the particular approaches in designing accurate
algorithms for different matrix classes in order to fill the rows of Table 2.1,

A
c
c
u
r
a
t
e
,
e
f
f
ic

ie
n
t

e
x
p
r
e
s
s
io

n
e
v
a
l
u
a
t
io

n
a
n
d

l
in

e
a
r

a
l
g
e
b
r
a

97

Table 2.1. Existing algorithms for accurate computations with various classes of structured matrices. Entries like n2 are
meant in a big-O sense; see Section 2.1 for details. ‘No’ means no accurate algorithms exist without using arbitrary
precision arithmetic; see Section 3.5 for details.

Type of Any Gauss. elim.
matrix det A A−1 minor NP PP CP RRD QR NE Az=b SVD EVD Reference

Acyclic n n2 n n2 n2 n2 n2 n3 Demmel et al. (1999)

DSTU n3 n5 n3 n3 n3 n3 n3 n3 Demmel et al. (1999),
Peláez and Moro (2006)

TSC n n3 n n4 n4 n4 n4 n4 Demmel et al. (1999),
Peláez and Moro (2006)

Diagonally
dominant n3 No n3 n3 n3 n3 Ye (2008a)

Alfa, Xue and Ye (2002),
Demmel and Koev (2004b),

M -matrices n3 n3 No n3 n3 n3 n3 O’Cinneide (1996), Peña (2004)

Cauchy
(non-TN) n2 n2 n2 n2 n3 n3 n3 n2 n3 Boros et al. (1999), Demmel (1999)

Björck and Pereyra (1970)
Vandermonde Higham (1990), Demmel (1999),
(non-TN) n2 No n3 n2 n3 Demmel and Koev (2006)

Displacement
rank one n2 n3 n3 Demmel (1999)

Totally
non-negative n n3 n3 n3 n4 n4 n3 n3 0 n2 n3 n3 Koev (2005, 2007)

TNJ n n3 n3 n3 n4 n4 n3 n3 0 n2 n3 n3 Koev and Dopico (2007)

Toeplitz No No No No No No No No No No Demmel et al. (2006)

98 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

explaining only a few in detail. Each row refers to a matrix class, and each
column to a linear algebra problem. A table entry nα means that an accurate
linear algebra algorithm costing O(nα) arithmetic operations for the given
problem and class exists. A ‘No’ entry means that no accurate algorithm
using traditional arithmetic exists, and indeed no accurate algorithm exists
without using arbitrary precision arithmetic, in a sense to be made precise
in Section 3.5.

We begin by explaining some of the terser column headings. ‘Any minor’
means that an arbitrary minor of the matrix may be computed accurately,
not just the determinant. ‘Gauss. elim. NP’ means Gaussian elimination

with no pivoting (GENP), and similarly ‘PP’ and ‘CP’ refer to partial pivot-

ing (GEPP) and complete pivoting (GECP), respectively. ‘RRD’ is a rank-

revealing decomposition as described above (frequently, but not always, the
same as GECP). ‘NE’ is Neville elimination (Gasca and Peña 1992), a vari-
ation on GENP where L and U are represented as products of bidiagonal
matrices (corresponding to elimination where a multiple of row i is added
to row i + 1 to create one zero entry). Az = b refers to solving Az = b
accurately given conditions on b (alternating signs in its components).

2.3.1. Acyclic matrices

A matrix A is called acyclic if its graph is: namely, the bipartite graph with
one node for each row and one node for each column and an edge (i, j) if Aij

is non-zero. Acyclic matrices include bidiagonal matrices (see Section 2.2.2),
and broken arrow matrices (which are non-zero only on the diagonal and one
row or one column), among exponentially many other possibilities (Demmel
and Gragg 1993).

Acyclic matrices are precisely the class of matrix sparsity patterns with
the property that the Laplace expansion of each minor can have at most one
non-zero term (Demmel and Gragg 1993). Thus every non-zero minor can be
computed accurately as the product of n matrix entries. Any acyclic matrix
is also a DSTU matrix (see the following section), and so the algorithms for
DSTU matrices may be used.

2.3.2. DSTU (diagonal scaled totally unimodular) matrices

A matrix A is called totally unimodular (TU) if all its minors are 0, 1, or −1.
A matrix is diagonally scaled totally unimodular (DSTU) if it is of the form
A = D1ZD2, where D1 and D2 are diagonal and Z is totally unimodular.

Accurate LDU and SVD algorithms for DSTU matrices were presented
in Demmel (1999) and are based on the following observation.

(1) The Schur complement of a DSTU matrix is DSTU.

Accurate, efficient expression evaluation and linear algebra 99

(2) If, at any step in the inner loop of Gaussian elimination, the subtraction

a′ij = aij −
aikakj

akk

(2.1)

has two non-zero operands, then the result a′ij must be exactly 0.

In other words, to make Gaussian elimination accurate, a one-line addition is
required to test whether both aij and

aikakj

akk
are non-zero, and to set a′ij = 0

if they are. Then the modified Gaussian elimination satisfies NIC, yielding
an accurate LDU decomposition. LDU with complete pivoting yields an
accurate RRD (with κ(L) and κ(U) both bounded by O(n2): Demmel et al.

(1999, Theorem 10.2)), and an accurate RRD yields an accurate SVD as
discussed in Section 2.2.1.

If a DSTU matrix is symmetric, Peláez and Moro (2006) derived accurate
algorithms that preserve and exploit the symmetry in their matrices. They
also presented such symmetric algorithms for TSC matrices discussed next.

DSTU matrices arise naturally in the formulation of eigenvalue problems
for Sturm–Liouville equations (Demmel and Koev 2001), and more gen-
eral scalar elliptic PDE with suitable finite element discretizations (Demmel
et al. 1999). We discuss this further below in Section 2.4.

2.3.3. TSC (total signed compound) matrices

Let S be the set of all matrices with a given sparsity and sign pattern. S
is called sign non-singular (SNS) if it contains only square matrices, and
the Laplace expansion of the determinant of each G ∈ S is the sum of
monomials of like-sign, with at least one non-zero monomial. S is called
total signed compound (TSC) if every square submatrix of any G ∈ S is
either SNS, or structurally singular (i.e., no non-zero monomials appear in
its determinant expansion). Acyclic matrices are obviously a special case of
TSC matrices, with at most one monomial appearing in each minor.

According to Demmel et al. (1999, Lemma 7.2) any minor of a TSC
matrix may be computed accurately using not more than 4n− 1 arithmetic
operations (and not counting various graph traversal operations). With
this computing the LDU decomposition of a TSC matrix is easy. If at any
step of Gaussian elimination the subtraction in (2.1) is one of same-signed
quantities, then a′ij is recomputed as a quotient of minors, each of which is

computed accurately as above. The total cost could go up to O(n4), but
this is still efficient, according to our convention.

2.3.4. Diagonally dominant and M-matrices

A matrix A is called (row) diagonally dominant if the sums si = aii −∑
j �=i |aij | are non-negative for all rows i. If in addition its off-diagonal

entries aij are non-positive (so that si =
∑

j aij), then it is called a (row)

100 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

diagonally dominant M-matrix . It turns out that these off-diagonal matrix
entries and the si, not the diagonal entries aii, are the right parameters
for doing accurate linear algebra with this class of matrices. Intuitively, it
is clear that the si are the natural parameters since the conditions si ≥ 0
define the class.

We explain how to do accurate LDU decomposition with no pivoting
or complete pivoting, in the case of a row diagonally dominant M -matrix.
Briefly, the algorithm can be organized to satisfy NIC (see Demmel and
Koev (2004b), O’Cinneide (1996) and Peña (2004) for details). For simplic-
ity of notation, let the n2 matrix parameters be bij = −aij and si, so all are
non-negative. The diagonal elements, aii, are readily available accurately
as a sum of positive numbers:

aii = si +
n∑

i=1

bij . (2.2)

The Schur complements computed using Gaussian elimination with com-
plete or no pivoting inherit the diagonally dominant M -matrix structure.
The parameters defining the Schur complement – the row sums (call them
s′i) and off-diagonal elements (call them a′ij = −b′ij) – are rational functions
with positive coefficients in the sis and bijs:

s′i = si +
bi1

a11
s1, b′ij = bij +

bi1

a11
b1j ,

with aii given by (2.2). Since the above expressions satisfy NIC, the LDU

decomposition computed using them will be accurate, as will the subse-
quent SVD.

Several improvements on this results have been made. Peña (2004) sug-
gested an alternative diagonal pivoting strategy which guarantees L and U
to be well conditioned (as opposed to ‘well conditioned in practice’ which
is what Gaussian elimination with complete pivoting delivers). Ye (2008a,
2008b) generalized this approach to symmetric diagonally dominant matri-
ces (removing the restriction on the signs of off-diagonal elements). It turns
out that in the process of Gaussian elimination with complete pivoting, up-
dating the si and the diagonal entries still satisfies NIC. However, there
can be (arbitrary) cancellation in the off-diagonal entries. Nonetheless, Ye
shows that the errors in the off-diagonal entries can be bounded in abso-
lute value so as to be able to guarantee that L and U are computed with
small norm-wise errors, which is all that is required for an RRD to, in turn,
provide an accurate SVD.

2.3.5. Matrices with displacement rank one

Matrices A that satisfy the Sylvester equation

DA − AT = B,

Accurate, efficient expression evaluation and linear algebra 101

where B = uvT is unit rank, are said to have displacement rank one. In
the easiest case, when D and T are diagonal (D = diag(d1, d2, . . . , dn), T =
diag(t1, t2, . . . , tn)), A is a (quasi-Cauchy) matrix aij =

uivj

di−tj
(Kailath and

Olshevsky 1995, 1997).
The quasi-Cauchy structure is preserved in the process of Gaussian elim-

ination with complete pivoting (Demmel 1999, Demmel et al. 1999). The
explicit formula for a determinant (or a minor) of a (quasi-)Cauchy matrix
satisfies NIC as mentioned before. In fact, Gaussian elimination can still
be made accurate at a cost of O(n3) just by changing the inner loop from
(2.1) to

a′ij = aij ·
(di − dk)(tk − tj)

(dk − tj)(di − tk)
.

This is the starting point in computing the SVD of many displacement
rank-one matrices. The Vandermonde matrix V =

[
xj−1

i

]n

i,j=1
has a dis-

placement rank one, where D = diag(x1, x2, . . . , xn) and T is the lower shift
matrix ti,i−1 = 1, i = 1, 2, . . . , n − 1, t1n = 1.

Then DA − AT = (xn
1 − 1, xn

2 − 1, . . . , xn
n − 1)T (0, 0, . . . , 0, 1) ≡ B. The

matrix T is circulant (and a root of unity) and is diagonalized T = QΛQ∗

by the (unitary) matrix of the DFT Qij = α(i−1)(j−1), where α is a primitive

nth root of unity, with eigenvalues Λii = α(i−1)(n−1).
Thus DA − AQΛQ∗ = B, and so D(AQ) − (AQ)Λ = BQ, i.e., AQ is a

quasi-Cauchy matrix (since BQ still has rank one). Now from an accurate
SVD of AQ = UΣV ∗ we automatically obtain an accurate SVD of A =
UΣ(QV)∗. But note that we need both the constant matrices Q and Λ for
this to work, which goes beyond NIC.

The same idea generalizes to other displacement rank-one matrices. For
example, if DA − AQ = B and D and T are unitarily diagonalizable, D =
QD1Q

∗ and T = SD2S
∗, then

D1(Q
∗
1AQ2) − (Q∗

1AQ2)D2 = (Q∗
1u)(vT Q2)

and Q∗
1AQ2 is a quasi-Cauchy matrix. If the decompositions D = QD1Q

∗

and T = SD2S
∗, and the products Q∗

1u and vT Q2 can be formed accurately,
then from an accurate SVD of the quasi-Cauchy matrix Q∗

1AQ2 = UΣV ∗ we
obtain an accurate SVD of A: A = (Q1U)Σ(Q2V)∗. This approach works,
e.g., for polynomial Vandermonde matrices involving orthogonal polyno-
mials (Demmel and Koev 2006) – see also Demmel et al. (1999), Demmel
(1999), Higham (1988) and Kailath and Olshevsky (1997) – but again re-
quires one to know certain constants accurately, thus going beyond NIC.

2.3.6. Totally non-negative and TNJ sign-regular matrices

The matrices all of whose minors are non-negative are called totally non-

negative (TN). Despite this seemingly severe restriction on the minors, TN

102 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

matrices arise frequently in practice: a Vandermonde matrix with positive
and increasing nodes, the Pascal matrix, and the Hilbert matrix are all ex-
amples of TN matrices. The first reference in the literature (that we are
aware of) for accurate matrix computations dates back to 1963 for a Vander-
monde matrix with positive and increasing nodes in an example of Kahan
and Farkas (1963a, 1963c, 1963b). This phenomenon was rediscovered in the
celebrated paper by Björck and Pereyra (1970) and later carefully analysed
and generalized (Boros et al. 1999, Higham 1987, 1990, Marco and Mart́ınez
2007, Demmel and Koev 2005, Mart́ınez and Peña 1998, 1998, 2003). All
these methods are based on explicit decompositions of the corresponding
matrices where all entries of the decompositions may be computed with
expressions satisfying NIC.

These ideas generalize to any TN matrix (Koev 2005, 2007) and are based
on a structure theorem for TN matrices (Fallat 2001, Gasca and Peña 1992,
1996): any non-singular TN matrix can be decomposed as a product of
non-negative bidiagonal factors

A = L(1)L(2) · · ·L(n−1)DU (n−1) · · ·U (1). (2.3)

As mentioned before, this variation on Gaussian elimination, called Neville
elimination, arises by eliminating all off-diagonal matrix entries by adding
a multiple of row (resp. column) i to row (resp. column) i + 1 to zero out
one entry, and eliminating entries diagonal by diagonal, from the outermost
(with row, resp. column, multipliers stored in L(1), resp. U (1)) to innermost
(with row, resp. column, multipliers stored in L(n−1), resp. U (n−1)). There
are exactly n2 independent non-negative parameters in the above decompo-
sition. They parametrize the space of all TN matrices.

It turns out that it is possible to perform essentially all linear algebra on
TN matrices by using only TN-preserving transformations. In other words,
given the parametrization of A in (2.3), it is possible to accurately compute
the parametrization of a submatrix (unsigned) inverse, Schur complement,
converse, or product of two such matrices, all in O(n3) time and satisfying
NIC (Koev 2007). In other words, the ability to do accurate linear algebra
is ‘closed’ under all these operations. Furthermore, based on NIC, it is
possible to accurately reduce such a parametrized matrix to bidiagonal form,
enabling an accurate SVD, and to accurately reduce it to tridiagonal form
T = BBT by a similarity, reducing the non-symmetric eigenvalue problem
to an accurate SVD (Koev 2005). Thus, virtually all linear algebra with
TN matrices can be performed accurately.

The only remaining question is about the starting point of this approach –
the accurate bidiagonal decompositions of the original matrix. The entries of
the bidiagonal decomposition are products of quotients of initial minors (i.e.,
contiguous minors that include the first row or column). Thus, for virtually
all well-known TN matrices – Pascal, Vandermonde, Cauchy (as well as their

Accurate, efficient expression evaluation and linear algebra 103

products, Schur complements, etc.) – there are accurate formulas for their
computation (Boros et al. 1999, Koev 2005, Mart́ınez and Peña 1998, 2003).

A matrix is sign-regular (Gantmacher and Krein 2002) if all minors of the
same order have the same sign (but not necessarily all positive as is the case
with TN matrices). A row- or a column-reversed TN matrix is sign-regular,
and the class of such matrices is denoted TNJ . Most linear algebra problems
for TNJ matrices follow trivially from the corresponding TN algorithms,
except for the eigenvalue algorithm (Koev 2007), which requires a TNJ -
preserving transformation into a symmetric anti-bidiagonal matrix.

We believe that the eigenvalue algorithms for TN and TNJ are the first
examples of accurate eigenvalue algorithms for non-symmetric matrices.

2.4. Going beyond NIC (no inaccurate cancellation)

We have cited several examples where we can do more general classes of
accurate structured matrix computations by using more general building
blocks than permitted by insisting on no inaccurate cancellation (NIC).

An accurate SVD of a Vandermonde matrix required knowing roots of
unity accurately (or, more precisely, being able to perform the operation x−
α accurately, where α is a root of unity). More general displacement rank-
one problems required similar accurate operations for constants α drawn
from eigenvalues from a fixed sequence of matrices, as well as the knowledge
of the orthogonal eigenvectors of these matrices.

Most interestingly, by allowing ourselves to accurately compute a given
set of polynomials, but all of bounded numbers of terms and degrees, we can
extend our DSTU approach from being able to accurately find eigenvalues
of only rather simply discretized differential equations, to being able to ac-
curately compute all the eigenvalues of the scalar elliptic partial differential
equation ∇ · (θ∇u) + λρu = 0 on a domain Ω with zero Dirichlet bound-
ary conditions, where θ(x) and ρ(x) are scalar functions discretized on a
general triangulated mesh in a standard way (isoperimetric finite elements
on a triangulated mesh). In this case it is the smallest eigenvalues that
are of physical interest, and they are accurately determined by the coeffi-
cients of the PDE. This result depends on a novel matrix factorization of the
discretized differential operator in Boman, Hendrickson and Vavasis (2004).

It is examples such as these that encourage us to systematically ask what
expressions we can accurately evaluate, including by allowing ourselves addi-
tional ‘black boxes’ as building blocks. This is the topic of the next section.

3. Accurate algorithms for polynomial evaluation

In this section we give a partial answer to the question ‘When can a mul-
tivariate (real or complex) polynomial be evaluated accurately?’ These
results (except for Section 3.5.3) have been published, with completely

104 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

rigorous proofs, in Demmel et al. (2006); we provide here intuitions and
proof sketches.

To summarize the content of this section, we give (sometimes tight) nec-
essary and sufficient conditions for accurate multivariate polynomial evalu-
ation over given domains. These conditions depend strongly on the type of
arithmetic chosen, specifically on the type of ‘basic’ operations allowed, as
well as on the domain that the inputs are taken from (and also on whether
the inputs belong to R

n or to C
n).

Intuitively, accurate evaluation of small quantities is a more complicated
issue than accurate evaluation of large quantities; thus the ‘interesting’ do-
mains, as we will see, lie arbitrarily close to or intersect the variety of the
polynomial (the set of points where the polynomial is 0). Evaluation on do-
mains that are not of this type (but are otherwise sufficiently well behaved)
is easy (see Section 3.2). Therefore, the variety plays a necessary role.

Example 3.1. To illustrate the role of the variety, we use the following
example. Consider the 2-parameter family of polynomials

Mjk(x) = j · x6
3 + x2

1 · x
2
2 · (j · x

2
1 + j · x2

2 − k · x2
3),

where j and k are positive integers, and the domain of evaluation is R
3.

Assume that we allow only addition, subtraction and multiplication of two
arguments as basic arithmetic operations, together with comparisons and
branching.

When k/j < 3, Mjk(x) is positive definite, i.e., zero only at the origin
and positive elsewhere. This will mean that Mjk(x) is easy to evaluate
accurately using a simple method discussed in Section 3.2.

When k/j > 3, then we will show that Mjk(x) cannot be evaluated accu-
rately by any algorithm using only addition, subtraction and multiplication
of two arguments. This will follow from a simple necessary condition on the
real variety VR(Mjk), the set of real x where Mjk(x) = 0: see Theorem 3.10.

When k/j = 3, i.e., on the boundary between the above two cases, Mjk(x)
is a multiple of the Motzkin polynomial (Reznick 2000). The real variety
VR(Mjk) = {x : |x1| = |x2| = |x3|} of this polynomial satisfies the necessary
condition of Theorem 3.10, and, to our knowledge, the simplest accurate
algorithm to evaluate it has 8 cases depending on the relative values of
|xi ± xj |. For example, on the branch defined by the inequalities x1 − x3| ≤
|x1 + x3| ∧ |x2 − x3| ≤ x2 + x3|, the algorithm evaluates p using the non-
obvious formula

p(x1, x2, x3) = x4
3 · [4((x1 − x3)

2 + (x2 − x3)
2 + (x1 − x3)(x2 − x3))]

+ x3
3 · [2(2(x1 − x3)

3 + 5(x2 − x3)(x1 − x3)
2

+ 5(x2 − x3)
2(x1 − x3) + 2(x2 − x3)

3)]

Accurate, efficient expression evaluation and linear algebra 105

+ x2
3 · [(x1 − x3)

4 + 8(x2 − x3)(x1 − x3)
3 + (x2 − x3)

4

+ 9(x2 − x3)
2(x1 − x3)

2 + 8(x2 − x3)
3(x1 − x3)]

+ x3 · [2(x2 − x3)(x1 − x3)((x1 − x3)
3 + (x2 − x3)

3

+ 2(x2 − x3)(x1 − x3)
2 + 2(x2 − x3)

2(x1 − x3)]

+ (x2 − x3)
2(x1 − x3)

2((x1 − x3)
2 + (x2 − x3)

2).

In contrast to the real case, when the domain is C
3, Theorem 3.10 will

show that Mjk(x) cannot be accurately evaluated using only addition, sub-
traction and multiplication.

The necessary conditions we obtain for accurate evaluability depend only
on the variety of p(x), but the variety alone is not always enough.

Example 3.2. Consider the irreducible, homogeneous, degree 2d, real
polynomial

p(x) = (x2d
1 + x2d

2) + (x2
1 + x2

2)(q(x3, . . . , xn))2,

where q(·) is homogeneous of degree d−1. The variety V (p) = {x1 = x2 = 0}
satisfies the necessary condition for accurate evaluability, but near V (p) the
polynomial p(x) is ‘dominated’ by (x2

1 + x2
2)(q(x3, . . . , xn))2, so accurate

evaluability of p(x) depends on the accurate evaluability of q(·).
We may now apply the same principle to q(·), etc., thus creating a decision

tree of polynomials. Rather than a characterizing theorem, one might expect
therefore that, in many cases, the answer can only be given by a recursive
decision procedure, expanding p(x) near the components of its variety and
so on. We discuss this more in Section 3.3.

The rest of Section 3 is structured as follows. In Section 3.1, we formalize
the type of algorithms we are interested in. Section 3.2 makes rigorous the
intuition that accurate evaluation ‘far from the variety’ is possible. Sec-
tion 3.3 considers the traditional model of arithmetic, on ‘well-behaved’ do-
mains similar to the ones chosen for the algorithms of Section 2. This model
has three basic operations, +,−,×, and allows for exact negation. While
not sufficient for the accurate evaluation everywhere of even simple polyno-
mial expressions such as x+y+z, the traditional model is simple enough to
allow us to give a characterization of accurately evaluable complex polyno-
mials, as well as (generally distinct) necessary and sufficient conditions for
accurate evaluability of real polynomials (sometimes these conditions are
identical, and offer a complete characterization). In addition, for the real
case, we show current progress toward constructing a decision procedure for
accurate evaluability of real polynomials. Section 3.4 expands the practical
scope of our analysis, since concluding that a computation is ‘impossible’ is
not the end of the story; instead, this prompts the question of which addi-
tional computational building blocks would be needed to make it possible.

106 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

For example, current computers often have a ‘fused multiply-add’ instruc-
tion x + y · z that computes the answer with one rounding error, and there
are software libraries that provide collections of accurately implemented
polynomials needed for certain applications, e.g., computational geometry
(Shewchuk 1997). Given any such a collection of what we will call ‘black-
box’ operations (about which we assume only a small relative error), we will
ask how much larger a set of polynomials can be evaluated accurately.

Finally, Section 3.5 discusses the implications of these results. Firstly,
they shed some light on the existence of accurate algorithms for linear al-
gebra operations like the ones described in Section 2: each such algorithm
satisfies NIC (see Section 1, and thus also satisfies the necessary condition
for accurate evaluability presented in Theorem 3.10). The apparently un-
related classes of structured matrices for which efficient and accurate linear
algebra algorithms exist share a common underlying algebraic structure.
Also, there may be other structured matrix classes sharing this property
and for which accurate algorithms could be built. Secondly, our results
show that some expressions or classes of problems cannot be accurately
evaluated, even with an arbitrary set of bounded-degree black-box opera-
tions at our disposal. The practical implication of this is that, for certain
types of problems, the use of arbitrarily high precision is necessary (see Sec-
tion 4). Lastly, but perhaps most importantly, our results lay down a path
toward the ultimate goal: a decision procedure (or ‘compiler’) which, given
as inputs a polynomial p, a domain D, and (perhaps) a set of black-box
operations, either produces an accurate algorithm for the evaluation of p on
D (including how to choose the machine precision ǫ for the desired relative
error η: see Section 3.1), or exhibits a ‘minimal’ set of black-box operations
that are still needed.

3.1. Formal statement and models of algorithms

We formalize here both the problem and the models of algorithms we will
use. We introduce the notation pcomp(x, δ) for the output of the algorithm,
and δ = (δ1, δ2, . . . , δk) for the vector of rounding errors.

For example, consider the algorithm that computes p(x) = x1 + x2 + x3

by performing two additions: it first adds x1 to x2, and then adds the result
to x3. If the first and second additions introduce the relative errors δ1,
respectively δ2, we obtain that, for this algorithm,

pcomp(x, δ) =
(
(x1 + x2)(1 + δ1) + x3

)
(1 + δ2)

= (x1 + x2 + x3)(1 + δ2) + (x1 + x3)δ1(1 + δ2). (3.1)

We give below a formal description of the algorithms we consider. For
more in-depth discussion of these assumptions and comparisons with other
models of computations, see Section 4.

Accurate, efficient expression evaluation and linear algebra 107

Definition 3.3. All algorithms considered in this section will satisfy the
following constraints.

(1) The inputs x are given exactly, rather than approximately.

(2) The algorithm always computes the output pcomp(x, δ) in finitely many
steps and, moreover, computes the exact value of p(x) when all rounding
errors δ = 0. This constraint excludes iterative algorithms which might
produce an approximate value of p(x) even when δ = 0. Some of the
reasons for this choice can be found in Section 2.2.

(3) The basic arithmetic operations beyond the traditional addition, sub-
traction and multiplication, if any, must be given explicitly. We refer
to the case when additional polynomial operations are included as ex-

tended arithmetic. Constants are available to our algorithms only in
the extended model and are also given explicitly.

(4) We consider algorithms both with and without comparisons and branch-
ing, since this choice may change the set of polynomials that we can
accurately evaluate. In the branching case, note that pcomp(x, δ) will
actually be piecewise polynomial.

(5) If the computed value of an operation depends only on the values of
its operands, i.e., if the same operands x and y of op(x, y) always
yield the same δ in rnd(op(x, y)) = op(x, y) · (1 + δ), then we call our
model deterministic; else it is non-deterministic. One can show that
comparisons and branching let a non-deterministic machine simulate
a deterministic one, and subsequently restrict our investigation to the
easier non-deterministic model.

Finally, we must formalize what type of domains we consider. Although,
in principle, any semi-algebraic set D could be examined, for simplicity we
consider open domains D, especially D = R

n or D = C
n. We can now give

the formal definition of accuracy.

Definition 3.4. We say that pcomp(x, δ) is an accurate algorithm for the
evaluation of p(x) for x ∈ D if

∀ 0 < η < 1 . . . for any η = desired relative error
∃ 0 < ǫ < 1 . . . there is an ǫ = machine precision

∀ x ∈ D . . . so that for all x in the domain
∀ |δi| ≤ ǫ . . . and for all rounding errors bounded by ǫ

|pcomp(x, δ)−p(x)| ≤ η ·|p(x)| . . . the relative error is at most η.

Note that the algorithm proposed above, which produces the pcomp given
in (3.1) for the evaluation of x1 + x2 + x3, is not an accurate algorithm

108 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

(consider the case when x1 + x2 = −x3). This is not accidental (see Theo-
rem 3.10).

Given an algorithm producing a polynomial pcomp, the problem of de-
ciding whether it is accurate is a Tarski-decidable problem (Renegar 1992,
Tarski 1951). What is unclear is whether the existence of an accurate al-
gorithm for a given polynomial and domain is a Tarski-decidable problem,
since we see no way to express ‘there exists an algorithm’ in the required
format.

3.2. The bounded-from-below case (empty variety)

We consider the simpler case where the polynomial p(x) to be evaluated is
bounded (in absolute value) above and below, in an appropriate manner, on
the domain D (this is what we referred to previously as ‘far from the variety’,
i.e., the set where the polynomial is 0). If the domain D is compact, we
give here, with proof, the following theorem. (We let D̄ denote the closure
of D.)

Theorem 3.5. Let pcomp(x, δ) be any algorithm computing p(x) satis-
fying pcomp(x, 0) = p(x), i.e., it computes the right value in the absence
of rounding error. Let pmin := infx∈D̄ |p(x)|. Suppose D̄ is compact and
pmin > 0. Then pcomp(x, δ) is an accurate algorithm for p(x) on D.

Proof. Since the relative error on D is

|pcomp(x, δ) − p(x)|/|p(x)| ≤ |pcomp(x, δ) − p(x)|/pmin,

it suffices to show that the right-hand side numerator approaches 0 uni-
formly as δ → 0. This follows by writing the value of pcomp(x, δ) along any
branch of the algorithm as

pcomp(x, δ) = p(x) +
∑

α>0

pα(x)δα,

where α > 0 is a multi-index with at least one component exceeding 0. By
compactness of D̄, all pα are bounded on D̄, and thus there exists some
constant C > 0 such that

∣∣∣∣
∑

α>0

pα(x)δα

∣∣∣∣ ≤ C
∑

α>0

|δ|α.

The right-hand side goes to 0 uniformly as the upper bound ǫ on each |δi|
goes to zero.

What about domains that are not compact, e.g., not bounded? The
proof above points to some of the issues that may occur: ratios pα(x)/p(x)
could become unbounded, even though pmin > 0. Another way to see that

Accurate, efficient expression evaluation and linear algebra 109

requiring pmin > 0 is not enough is to consider the polynomial

p(x) = 1 + (x1 + x2 + x3)
2.

To evaluate this polynomial accurately, intuitively, one needs to evaluate
(x1 + x2 + x3)

2 accurately, once it is sufficiently large. If one uses only
addition, subtraction, and multiplication, this is not possible. (These con-
siderations will be made explicit in Section 3.3.3.)

There are, however, cases in which unboundedness is not an impediment.
Consider the case of a homogeneous polynomial p(x), to be evaluated on
a homogeneous domain D (i.e., a domain with the property that x ∈ D
implies γx ∈ D, for any scalar γ). Due to the homogeneity of p, we can
then restrict our analysis to D ∩ Sn−1 (the unit ball in R

n), or D ∩ S2n−1

(the unit ball in C
n). On such domains we can use a compactness argument,

as we did before.

Theorem 3.6. Let p(x) be a homogeneous polynomial, let D be a homo-
geneous domain, and let S denote the unit ball in R

n (or C
n). Let

pmin,homo := inf
x∈D̄∩S

|p(x)|.

Then p(x) can be evaluated accurately if pmin,homo > 0.

A simple, Horner-like scheme that provides an accurate pcomp(x, δ) in this
case is given in Demmel et al. (2006), along with a proof.

3.3. Traditional arithmetic

In this section we consider the basic or traditional arithmetic over the real or
complex fields, with the three basic operations {+,−,×}, to which we add
negation. The model of arithmetic is governed by the laws in Section 3.1,
and has also been described in Section 2. We remind the reader that this
arithmetic model does not allow the use of constants.

Section 3.3.1 describes the necessary condition for accurate evaluabil-
ity over both real and complex domains. Section 3.3.2, respectively Sec-
tion 3.3.3, deals with sufficient conditions for accurate evaluability over C

n,
respectively R

n. We show that the necessary and sufficient conditions for
accurate evaluation coincide in the complex case, in Section 3.3.2. Sec-
tion 3.3.3 also describes progress toward understanding how to construct a
decision procedure in the real case.

Throughout this section, we will make use of the following definition of
allowability.

Definition 3.7. Let p be a polynomial over R
n or C

n, with variety V (p) :=
{x : p(x) = 0}. We call V (p) allowable if it can be represented as a union

110 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

of intersections of hyperplanes of the form

Zi = {x : xi = 0}, (3.2)

Sij = {x : xi + xj = 0}, (3.3)

Dij = {x : xi − xj = 0}. (3.4)

If V (p) is not allowable, we call it unallowable.

The word ‘allowable’ in the definition above is used because, as we will
see, polynomials with ‘unallowable’ varieties do not allow for the existence
of accurate evaluation algorithms.

For a polynomial p, having an allowable variety V (p) is obviously a Tarski-
decidable property (following Tarski (1951)), since the number of unions of
intersections of hyperplanes (3.2)–(3.4) is finite.

3.3.1. Necessity: real and complex

All the statements, proofs, and proof sketches in this section work equally
well for both the real and the complex case, and thus we will treat them
together.

Throughout this section we will denote the variable space by S∈{Rn, Cn}.
To state and explain the main result of this section, we need to introduce

some additional notions and notation.

Definition 3.8. Given a polynomial p over S with unallowable variety
V (p), consider all sets W that are finite intersections of allowable hyper-
planes defined by (3.2), (3.3), (3.4), and subtract from V (p) all those W
for which W ⊂ V (p). We call the remaining subset of the variety points in

general position and denote it by G(p).

If V (p) is not allowable, then from Definition 3.8 it follows that G(p) �= ∅.

Definition 3.9. Given x ∈ S, define the set Allow(x) as the intersection
of all allowable planes going through x,

Allow(x) :=
(
∩x∈ZiZi

)
∩

(
∩x∈SijSij

)
∩

(
∩x∈DijDij

)
,

with the understanding that

Allow(x) := S whenever x /∈ Zi, Sij , Dij for all i, j.

Note that Allow(x) is a linear subspace of S.

In general, we are interested in the sets Allow(x) primarily when x ∈ G(p).
For each such x, Allow(x) �⊆ V (p), which follows directly from the definition
of G(p).

We can now state the main result of this section, which is a necessity
condition for the evaluability of polynomials over domains. In the following,
we denote by Int(D) the closure of the interior of the domain D.

Accurate, efficient expression evaluation and linear algebra 111

Theorem 3.10. Let p be a polynomial over a domain D ∈ S, such that
D = Int(D). Let G(p) be the set of points in general position on the variety
V (p). If Int(D) ∩ G(p) �= ∅, then p is not accurately evaluable on D.

With a little more work one can see that ‘failures’ are not rare. More
precisely, in the same circumstances as above, any algorithm attempting to
compute p accurately on D will fail to do so consistently on a set of positive
measure.

Corollary 3.11. Let p and D as before, x ∈ Int(D) ∩ G(p), ǫ > 0, 1 >
η > 0, and pcomp(·, δ) be the result of an algorithm attempting to compute
p on D with error vector δ. Then there exists a set ∆x arbitrarily close

to x and a set ∆δ of positive measure in Hǫ := {δ : |δi| ≤ ǫ} such that
|pcomp − p|/|p| > η when computed at any point y ∈ ∆x using any vector of
relative errors δ ∈ ∆δ.

For the benefit of the reader we give here a sketch of the proof of Theo-
rem 3.10 in an informal style. Details and rigorous statements can be found
in Demmel et al. (2006).

Proof of Theorem 3.10. The essential idea is to consider under what kind
of circumstances can an algorithm in which every non-trivial operation in-
troduces errors actually produce a perfect 0. Note that, by definition, for
an algorithm to be accurate, it must compute p(x) exactly when x ∈ V (p),
and it cannot output 0 for any x /∈ V (p).

For starters, think of the algorithm as a directed acyclic graph (DAG) with
input, computational, branching, and output nodes – as in Aho, Hopcroft
and Ullman (1975). Every computational node has two inputs (which may
both come from a single other computational node). All computational
nodes are labelled by (op(·), δi) with op(·) representing the operation that
takes place at that node. It means that at each node, the algorithm takes
in two inputs, executes the operation, and multiplies the result by (1 +
δi). Finally, for every branch of the algorithm, there is a single destination
node, with one input and no output, whose input value is the result of
the algorithm.

For simplicity, in this sketch we only consider non-branching algorithms.
Assume that x ∈ G(p) is fixed, and let us examine the algorithm as a

function of the error variables δ. Some computational nodes in this DAG
might do ‘trivial’ work (work that, given the input x, outputs 0 for all choices
of variables δ). For example, such a node might receive input from a single
computational node, subtract it from itself, and thus output 0. Note that
multiplication nodes cannot produce a 0 unless they receive a 0 as an input.

For all non-trivial computation nodes, the output result is a polynomial
of δ (and thus it will only vanish on a set of δs of measure 0).

112 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

As such, for any x ∈ G(p), there will be a positive measure set ∆ of δs
for which non-trivial nodes will not output 0. Let us now choose some δ in
this set and then look at the computational output node. Since we assume
that the algorithm is accurate, the output node must be 0, and therefore
the output node must be of ‘trivial’ type. Let us track back zeros in the
computation, marking the nodes where such zeros appear and propagate
from. In other words, backward-reconstruct paths of zeros that lead to the
output of the computation.

Zeros propagate forward by multiplication, or by the addition/subtraction
of identical quantities; but how do the first zeros on such paths (from the
perspective of the computation) get created? A quick analysis shows that
there are only three possibilities: either they are sources (zero as an input),
or come from nodes corresponding to the trivial operation of subtracting an
input from itself (q(δ)− q(δ), since the node that computed this input must
have been non-trivial), or they correspond to the addition or subtraction of
two equal source inputs (xi = xj or xi = −xj).

We illustrate these possibilities in Figure 3.1. The white nodes are ‘trivial’
nodes, labelled with the operation executed there and the error variable; for
clarity, we dropped the indices on the variables δi, and chose not to represent
certain parts of the graph. The grey nodes are non-trivial nodes. Arrows

����������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

0
0

0 0
0

0
0

0

22p2(δ)p2(δ)

p1(δ)

pcomp(x, δ)=0

x2 =0
x3 =2 x5 =2

−, δ

−, δ

−, δ

+, δ

∗, δ

∗, δ

Figure 3.1. The three ways to produce zeros.

Accurate, efficient expression evaluation and linear algebra 113

are labelled with the value they carry. Rectangles represent source nodes,
and the triangle is the final output node.

The key observation is that all of these zeros would be preserved if we

replaced x with any y ∈ Allow(x). In other words, if the algorithm outputs
pcomp(x, δ) = 0, for some δ ∈ ∆, then it will also output pcomp(y, δ) = 0, for
all δ ∈ ∆, and all y ∈ Allow(x).

For example, assume that the polynomial in Figure 3.1 is

p(x) = (x1 + x4 + x6)
2 + x4

2 + (x3 − x5)
2,

with unallowable variety

V (p) = {x1 + x4 + x6 = 0} ∩ {x2 = 0} ∩ {x3 = x5},

and that we want to compute p at x = (1, 0, 2, 3, 2,−4) ∈ G(p). Then the
result of the computation would be correct: pcomp(x, δ) = 0. However, this
algorithm would also output pcomp(y, δ) = 0 for the point y = (1, 0, 2, 3, 2, 4),
which is in Allow(x) = {x2 = 0} ∩ {x3 = x5}, but not in V (p), since
p(y) = 16.

Since x ∈ G(p), Allow(x) /∈ V (p), and thus the algorithm obtains 0 on
points not in the variety, hence it fails.

3.3.2. Sufficiency: the complex case

Suppose we now restrict input values to be complex numbers and use the
same algorithm types and the notion of accurate evaluability from the
previous sections. By Theorem 3.10, for a polynomial p of n complex vari-
ables to be accurately evaluable over C

n, it is necessary that its variety
V (p) := {z ∈ C

n : p(z) = 0} be allowable.
We give and explain here a result that shows that this condition is also

sufficient. This characterization is possible in the complex polynomial case
because complex varieties are (pun intended) much simpler than real ones.
In particular, Theorem 3.13 has no correspondent for real varieties, and
therefore we cannot prove anything close to Theorem 3.12 for the real poly-
nomial case.

Theorem 3.12. Let p : C
n → C be a polynomial with integer coefficients

and zero constant term. Then p is accurately evaluable on D = C
n if and

only if the variety V (p) is allowable.

To prove this, we first investigate allowable complex varieties. We start
by recalling a basic fact about complex polynomial varieties (Theorem 3.13),
which can, for example, be deduced from Theorem 3.7.4 in Taylor (2004,
p. 53). Let V denote any complex variety. To say that dimC(V) = k means
that, for each z ∈ V and each δ > 0, there exists w ∈ V ∩B(z, δ) such that w
has a V -neighbourhood that is homeomorphic to a real 2k-dimensional ball.

114 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

Theorem 3.13. Let p be a non-constant polynomial over C
n. Then

dimC(V (p)) = n − 1.

Corollary 3.14. Let p : C
n → C be a non-constant polynomial whose

variety V (p) is allowable. Then V (p) is a union of allowable hyperplanes.

Proof. Since V (p) is allowable, let V (p) = ∪jSj be the (minimal) way
to write V (p) as an irredundant union of irredundant intersections of hy-
perplanes. Assume that, for some j0, Sj0 is not a hyperplane but an (ir-
redundant) intersection of hyperplanes. Let z ∈ Sj0 \ ∪j �=j0Sj . Then, for
some δ > 0, B(z, δ) ∩ V (p) ⊂ Sj0 . Since dimC(Sj0) < n − 1, no point in
B(z, δ) ∩ V (p) has a V (p)-neighbourhood that is homeomorphic to a real
2(n − 1)-dimensional ball, which is a contradiction.

Corollary 3.15. If p : C
n → C is a polynomial whose variety V (p) is

allowable, then it is a product p = c
∏

j pj , where each pj is a power of xi,

(xi − xj), or (xi + xj).

Proof. By Corollary 3.14, the variety V (p) is an irredundant union of al-
lowable hyperplanes.

Choose a hyperplane H in that union. If H = Zj0 for some J0, expand
p into a Taylor series in xj0 . If H = Di0j0 (or H = Si0j0) for some i0, j0,
expand p into a Taylor series in (xi0 −xj0) (or (xi0 +xj0)). In this case, the
zeroth coefficient of p in the expansion must be the zero polynomial in xj ,
j �= j0 (or j /∈ {i0, j0}). Hence there is a k such that p(x) = xk

j0
p̃(x) in the

first case, or p(x) = (xi0 ±xj0)
k p̃(x) in the second (third) one. In any case,

we choose k maximal, so that V (p̃) does not include H.
It is easy to see that the variety V (p̃) must include V (p) \ H (the union

of all the other hyperplanes), whose dimension is n−1. Moreover, V (p̃) (by
Theorem 3.13) has dimension n − 1 and, by the maximality of k, does not
include H.

If V (p̃)∩H := H ′ were non-empty, it would follow that dim(H ′) ≤ n−2
(since it is included in the hyperplane H, and strictly smaller than H).
This would contradict Theorem 3.13, which states that dim(V (p̃)) = n− 1.
Therefore it must be that V (p̃)∩H = ∅, and thus V (p̃) must equal V (p)\H,
the union of a smaller number of allowable hyperplanes.

Proceed inductively by factoring p̃ in the same fashion.

The crucial point in the proof above is that the V (p̃) ∩ H must be ∅,
due to Theorem 3.13. The same argument would fail in the real case: to
illustrate this, consider the polynomial p(x1, x2, x3) = x4

1 + x2
1(x2 + x3)

2.
The variety V (p) = {x1 = 0} has dimension 2, but, after factoring out
x2

1, the variety of the remaining polynomial, p̃ = x2
1 + (x2 + x3)

2, is given
by {x1 = 0} ∪ {x2 + x3 = 0}, which has dimension 1. We can now prove
Theorem 3.12.

Accurate, efficient expression evaluation and linear algebra 115

Proof of Theorem 3.12. By Corollary 3.15, p = c
∏

j pj , with each pj a

power of xk or (xk ± xl). It also follows that c must be an integer since all
coefficients of p are integers. Since each of the factors is accurately evaluable,
and we can get any integer constant c in front of p by repeated addition
(followed, if need be, by negation), which are again accurate operations,
the algorithm that forms their product and then adds/negates to obtain c
evaluates p accurately.

Theorem 3.12 implies that only homogeneous polynomials are accurately
evaluable over C

n.

3.3.3. Sufficiency: toward a decision procedure for the real case

In this section we relate the accurate evaluability of a polynomial to the
accurate evaluability of its ‘dominant terms’, and explore a possible avenue
toward a decision procedure to establish the former via a recursive/inductive
procedure based on the latter.

We consider only homogeneous polynomials, for reasons outlined in Sec-
tion 3.2, and we also consider separately the branching and non-branching
cases. Most of the section is devoted to non-branching algorithms, but we do
need branching for our statements at the end; we keep the reader informed
of all changes in the assumptions.

To accurately compute a homogeneous polynomial of degree d using a non-
branching algorithm, one needs to use a homogeneous algorithm, described
by the following definition and lemma, to be used later in Section 3.3.5.

Definition 3.16. We call an algorithm pcomp(x, δ) with error set δ for
computing p(x) homogeneous of degree d if:

(1) the final output is of degree d in x,

(2) no output of a computational node exceeds degree d in x,

(3) the output of every computational node is homogeneous in x.

Lemma 3.17. If p(x) is a homogeneous polynomial of degree d and if a
non-branching algorithm evaluates p(x) accurately by computing pcomp(x,δ),
the algorithm must itself be homogeneous of degree d.

The proof combines the relative errors |pcomp(x, δ)− p(x)|/|p(x)|, treated
as in the proof of Theorem 3.5, and an analysis of the algorithm as a DAG,
as in Section 3.3.1.

Owing to the complexity of the issues, the rest of this section is subdivided
into four parts.

• Section 3.3.4 makes rigorous the notion of dominance and explains how
to find the dominant terms by using various simple linear changes of
variables.

116 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

• In Section 3.3.5, we explain how to ‘prune’ an algorithm to manu-
facture an algorithm that evaluates one of its dominant terms, and
we establish that accurate evaluation of the dominant terms identi-
fied in Section 3.3.4 is necessary for the accurate evaluation of the
polynomial.

• Section 3.3.6 establishes that accurate evaluation of a special set of
dominant terms, together with the slices of space where they dominate,
is sufficient for accurate evaluation of the polynomial.

• Finally, Section 3.3.7 discusses obstacles to a complete inductive pro-
cedure.

3.3.4. Dominance

We now describe what we mean by ‘dominant terms’ of the polynomial.
Given an allowable variety V (P), we fix an irreducible component of V (p).
Any such component is described by linear allowable constraints. We note
(see Demmel et al. (2006)) that any given component of V (p) can be put
into the form x1 = x2 = · · · = xk = 0, using what we call a standard change
of variables: standard changes of variables are linear transformations of
the variables, which are intuitively simple, but whose exact combinatorial
definition is long and we choose to leave it out.

After a standard change of variables, we look at the component x1 =
x2 = · · · = xk = 0. We can assume that the polynomial p(x) can be written
(almost following MATLAB notation) as

p(x) =
∑

λ∈Λ

cλxλ
[1:k]qλ(x[k+1:n]),

where we write x[1:k] := (x1, . . . , xk), x[k+1:n] := (xk+1, . . . , xn). Also, we let
Λ be the set of all multi-indices λ := (λ1, . . . , λk) appearing above.

To determine all dominant terms associated with the component x1 =
x2 = · · · = xk = 0, consider the Newton polytope P of the polynomial p
with respect to the variables x1 through xk only, i.e., the convex hull of
the exponent vectors λ ∈ Λ (see, e.g., Miller and Sturmfels (2005, p. 71)).
Next, consider the normal fan N(P) of P (see Ziegler (1995, pp. 192–193))
consisting of the cones of all row vectors η whose dot products with x ∈ P
are maximal for x on a fixed face of P . That means that, for every non-
empty face F of P , we take

NF :=
{

η = (n1, . . . , nk) ∈ (Rk) : F ⊆

{
x ∈ P : ηx

(
:=

k∑

j=1

njxj

)
= max

y∈P
ηy

}}

Accurate, efficient expression evaluation and linear algebra 117

and

N(P) := {NF : F is a face of P}.

Finally, consider the intersection of the negative of the normal fan −N(P)
and the non-negative quadrant R

k
+. This splits the first quadrant R

k
+ into

several regions SΛj according to which subsets Λj of exponents λ ‘dominate’
close to the considered component of the variety V (p), in the following sense.

Definition 3.18. Let Λj be a subset of Λ that determines a face of the
Newton polytope P of p such that the negative of its normal cone −N(P)
intersects (Rk)+ non-trivially (not only at the origin). Define SΛj ∈ (Rk)+
to be the set of all non-negative row vectors η such that

ηλ1 = ηλ2 < ηλ, ∀λ1, λ2 ∈ Λj , and λ ∈ Λ \ Λj .

Note that if x1 through xk are small, then the exponential change of
variables xj �→ − log |xj | gives rise to a correspondence between the non-
negative part of −N(P) and the space of original variables x[1:k]. We map

the sets SΛj back into a neighbourhood of 0 in R
k by lifting.

Definition 3.19. Let FΛj ⊆ [−1, 1]k be the set of all points x[1:k] ∈ R
k

such that

η := (− log |x1|, . . . ,− log |xk|) ∈ SΛj .

For any j, the closure of FΛj contains the origin in R
k. Given a point

x[1:k] ∈ FΛj , and given η = (n1, n2, . . . , nk) ∈ SΛj , for any t ∈ (0, 1), the
vector (x1t

n1 , . . . , xkt
nk) is in FΛj . Indeed, if (− log |x1|, . . . ,− log |xk|) ∈

SΛj , then so is (− log |x1|, . . . ,− log |xk|) − log |t|η, since all equalities and
inequalities that define SΛj will be preserved, the latter because log |t| < 0.

Example 3.20. Consider the following polynomial:

p(x1, x2, x3) = x8
2x

12
3 + x2

1x
2
2x

14
3 + x8

1x
12
3 + x6

1x
14
2 + x10

1 x6
2x

4
3.

This polynomial is positive and easy to evaluate accurately; the reason we
have chosen it is to illustrate the Newton polytope, its normal fan, and the
sets FΛj and SΛj defined above.

For this example,

V (p) = {x1 = x2 = 0} ∪ {x1 = x3 = 0} ∪ {x2 = x3 = 0}.

We examine the behaviour of the polynomial near the x1 = x2 = 0
component of the variety (i.e., we consider x3 to be large). Note that only
the first three monomial terms, x8

2x
12
3 , x2

1x
2
2x

14
3 , and x8

1x
12
3 will play an

important role, since if x1, x2 ≪ 1, x6
1x

14
2 ≪ x8

2x
12
3 , respectively, x10

1 x6
2x

4
3 ≪

x8
1x

12
3 .

118 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

−2 0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

Figure 3.2. The Newton polytope P and its normal fan N(P).

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

S{(2,2)}

S{(0,8)}

S{(2,2),(0,8)}

S{(2,2),(8,0)}

S{(8,0)}

Figure 3.3. The intersection −N(P)∩R
k
+ and the regions SΛj

.

Accurate, efficient expression evaluation and linear algebra 119

−1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Region A Region A

Region A Region A

Region B

Region B

Region CRegion C
Region A: F{(2,2)}

Region B: F{(0,8)}

Region C: F{(8,0)}

F{(2,2),(0,8)}

F{(2,2),(8,0)}

Figure 3.4. The regions FΛj
.

Figures 3.2, 3.3 and 3.4 show the Newton polytope P of p with respect
to the variables x1, x2, its normal fan N(P), the intersection −N(P)∩R2

+,
the regions SΛj , and the regions FΛj .

Definition 3.21. We define the dominant term of p(x) corresponding to
the component x1 = · · · = xk = 0 and the region FΛj by

pdomj
(x) :=

∑

λ∈Λj

cλxλ
[1:k]qλ(x[k+1:n]).

The following observations about dominant terms are immediate.

Lemma 3.22. Let η = (n1, . . . , nk) ∈ SΛj and let dj :=
∑

λi∈Λj
λini. Let

x0 be fixed and let

x(t) := (x1(t), . . . , xn(t)), xj(t) :=

{
tnjx0

j , j = 1, . . . , k,

x0
j , j = k + 1, . . . , n.

Then pdomj
(x(t)) has degree dj in t and is the lowest-degree term of p(x(t))

in t, that is,

p(x(t)) = pdomj (x(t)) + o(tdj) as t → 0, degt pdomj (x(t)) = dj .

120 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

Corollary 3.23. Under the assumptions of Lemma 3.22, suppose that
pdomj

(x0) �= 0. Then

lim
t→0

pdomj (x(t))

p(x(t))
= 1.

The next question is whether the term pdomj
indeed dominates the re-

maining terms of p in the region FΛj , in the sense that pdomj
(x)/p(x) is

close to 1 sufficiently close to x1 = · · · = xk = 0. Indeed, we show that each
dominant term pdomj

, such that the convex hull of Λj is a facet of the New-
ton polytope of p and whose variety V (pdomj

) does not have a component
strictly larger than the set x1 = · · · = xk = 0, dominates the remaining
terms in p, not only in FΛj , but in a certain slice F̃Λj around FΛj . These
dominant terms, corresponding to larger sets Λj , are the useful ones, since
they pick up terms relevant not only in the region FΛj but also in its neigh-
bourhood.

In Example 3.20 above, the useful dominant terms correspond to the
regions F{(2,2),(8,0)} and F{(2,2),(0,8)} (the only relevant edges of the polygon).
This points to the fact that we should be ultimately interested only in
dominant terms corresponding to the facets, i.e., the highest-dimensional
faces, of the Newton polytope of p. Note that the convex hull of Λj is a facet
of the Newton polytope N if and only if the set SΛj is a one-dimensional ray.

The next lemma will be instrumental for our results in Section 3.3.6. It
shows that each dominant term pdomj such that the convex hull of Λj is
a facet of the Newton polytope of p and whose variety V (pdomj) does not
have a component strictly larger than the set x1 = · · · = xk = 0 indeed
dominates the remaining terms in p in a certain ‘slice’ F̃Λj around FΛj .

Lemma 3.24. Let pdomj be the dominant term of a homogeneous poly-
nomial p corresponding to the component x1 = · · · = xk = 0 of the variety
V (p) and to the set Λj whose convex hull is a facet of the Newton poly-
tope N .

Let S̃Λj be any closed pointed cone in (Rk)+ with vertex at 0 that does
not intersect other one-dimensional rays SΛl

, l �= j, and contains SΛj \ {0}

in its interior. Let F̃Λj be the closure of the set

{x[1:k] ∈ [−1, 1]k : (− log |x1|, . . . ,− log |xk|) ∈ S̃Λj}. (3.5)

Suppose the variety V (pdomj) of pdomj is allowable and intersects F̃Λj only
at 0. Let ‖ · ‖ be any norm. Then, for any δ = δ(j) > 0, there exists
ε = ε(j) > 0 such that
∣∣∣∣
pdomj

(x[1:k], x[k+1:n])

p(x[1:k], x[k+1:n])
−1

∣∣∣∣ < δ whenever
‖x[1:k]‖

‖x[k+1:n]‖
≤ ε and x[1:k] ∈ F̃Λj .

(3.6)

Accurate, efficient expression evaluation and linear algebra 121

For a proof of Lemma 3.24, the reader is referred to Demmel et al. (2006).
The above discussion of dominance was based on the transformation of

a given irreducible component of the variety to the form x1 = · · · = xk =
0. We must reiterate that the identification of dominant terms becomes
possible only after a suitable change of variables C is used to put a given
irreducible component into the standard form x1 = · · · = xk = 0 and then
the sets Λj are determined. Note, however, that the polynomial pdomj is
given in terms of the original variables, i.e., as a sum of monomials in the
original variables xq and sums/differences xq ± xr. We therefore use the
more precise notation pdomj ,C in the rest of this section.

Definition 3.25. Without loss of generality, we can assume that any stan-
dard change of variables has the form

x = (x[1:k1], x[k1+1:k2], . . . , x[kl−1+1:kl])

�→ x̃ = (x̃[1:k1], x̃[k1+1:k2], . . . , x̃[kl−1+1:kl]),

where x̃km+1 := xkm+1, x̃km+2 := xkm+2 − σkm+2xkm+1, . . . ,

x̃km+1 := xkm+1 − σkm+1xkm+1 , k0 := 0, σr = ±1 for all pertinent r.

Note also that we can think of the vectors η ∈ SΛj as being indexed by
integers 1 through kl, i.e., η = (n1, . . . , nkl

). Moreover, to define pruning in
the next subsection we will assume that

nkm+1 ≤ nr for all r = km + 2, . . . , km+1 and for all m = 0, . . . , l − 1.
(3.7)

3.3.5. Pruning

We show here how to convert an accurate algorithm that evaluates a poly-
nomial p into an accurate algorithm that evaluates a selected dominant
term pdomj ,C . This will imply that being able to evaluate dominant terms
accurately is a necessary condition for being able to evaluate the original
polynomial accurately.

This process, which we will refer to as pruning , will consist of deleting
some vertices and edges and redirecting certain other edges in the DAG that
represents the algorithm. We explain the pruning process informally and
through an example; for the rigorous definition, see Demmel et al. (2006).

Starting at the sources, we process each node provided that both of its
inputs have been processed already (acyclicity insures that this can be done).
Then, at any node u which performs an addition or subtraction of two inputs
from nodes v and w of different degrees, we delete the node and the in-edge
from the input of smaller degree (say v) and redirect the out-edge from u
to w (the node with the larger degree output). Then we go backward and
delete all nodes and/or edges on that sub-DAG, up to the source nodes. We
denote the output of the pruned algorithm by pdomj ,C,comp(x, δ).

122 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

x1 x2 x3 x4 x5

A

Output

Figure 3.5. Pruning an algorithm for
p(x) = x2

1x
2
2 + (x2 − x3)

4 + (x3 − x4)
2x2

5.

Example 3.26. Figure 3.5 shows an example of pruning an algorithm
that evaluates the polynomial

x2
1x

2
2 + (x2 − x3)

4 + (x3 − x4)
2x2

5

using the substitution

(tx1, x2, tx3 + x2, tx4 + x2, x5)

near the component

x1 = 0, x2 = x3 = x4.

The result of pruning is an algorithm that evaluates the dominant term

x2
1x

2
2 + (x3 − x4)

2x2
5.

The node A has two sub-DAGs leading to it; the right one (going back to
the sources x2 and x3) is pruned due to the fact that it computes (x2−x3)

4,
a quantity of order O(t4), whereas the other produces x2

1x
2
2, a quantity of

order O(t2).

Accurate, efficient expression evaluation and linear algebra 123

The output of the original algorithm is given by

pcomp(x, δ) =
[(

x2
1(1 + δ1)x

2
2(1 + δ2)(1 + δ3)

+ (x2 − x3)
4(1 + δ4)

4(1 + δ5)
2(1 + δ6)

]
(1 + δ7)

+
[
(x3 − x4)

2(1 + δ8)
2(1 + δ9)x

2
5(1 + δ10)(1 + δ11)

]
(1 + δ12).

The output of the pruned algorithm is

pdomj ,C,comp(x, δ) =
[
x2

1x
2
2(1 + δ1)(1 + δ2)(1 + δ3))(1 + δ7) + (x3 − x4)

2x2
5

× (1 + δ8)
2(1 + δ9)(1 + δ10)(1 + δ11)

]
(1 + δ12).

We formalize the main result regarding the pruning process below.

Theorem 3.27. Suppose a non-branching algorithm evaluates a polyno-
mial p accurately on R

n by computing pcomp(x, δ). Suppose C is a standard
change of variables (as in Definition 3.25) associated with an irreducible
component of V (p). Let pdomj ,C be one of the corresponding dominant
terms of p and let SΛj satisfy (3.7). Then the pruned algorithm with out-
put pdomj ,C,comp(x, δ) evaluates pdomj ,C accurately on R

n. In other words,
being able to compute all such pdomj ,C for all components of the variety V (p)
and all standard changes of variables C accurately is a necessary condition
for computing p accurately.

3.3.6. Sufficiency of evaluating dominant terms

Our next goal is to prove a converse to Theorem 3.27; however, strictly
speaking, the results that follow do not provide a true converse, since
branching is needed to construct an algorithm that evaluates a polynomial
p accurately from algorithms that evaluate its dominant terms accurately.
Recall that Theorem 3.27 involves non-branching algorithms.

We make two assumptions: that our polynomial p is homogeneous and ir-
reducible. The latter assumption effectively reduces the problem to that
of accurate evaluation of a non-negative polynomial, due to the follow-
ing lemma.

Lemma 3.28. If a polynomial p is irreducible and has an allowable variety
V (p), then it is either a constant multiple of a linear form that defines an
allowable hyperplane, or it does not change its sign in R

n.

Hence, we can restrict ourselves to the case of a homogeneous, irreducible,
non-negative polynomial over the entire R

n. For this case, we have the
following theorem.

Theorem 3.29. Let p be a homogeneous non-negative polynomial whose
variety V (p) is allowable. Suppose that all dominant terms pdomj ,C for all
components of the variety V (p), all standard changes of variables C and

124 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

all subsets Λj satisfying (3.7) are accurately evaluable. Then there exists a
branching algorithm that evaluates p accurately over R

n.

Proof of Theorem 3.29. We first show how to evaluate p accurately in a
neighbourhood of each irreducible component of its variety V (p). We next
evaluate p accurately off these neighbourhoods of V (p). The final algorithm
will involve branching depending on which region the input belongs to, and
the subsequent execution of the corresponding subroutine.

Consider a particular irreducible component V0 of the variety V (p); us-
ing a standard change of variables C, we map V0 to a set of the form
x̃1 = · · · = x̃k = 0. We create an ǫ-neighbourhood of V0 where we can
evaluate p accurately; this neighbourhood is built up from semi-algebraic ǫ-
neighbourhoods. More precisely, for each V0, we can find a collection (Sj) of
semi-algebraic sets, all determined by polynomial inequalities with integer
coefficients, and the corresponding numbers ǫj , so that the polynomial p can
be evaluated with desired accuracy η in each ǫj-neighbourhood of V0 within
the piece Sj . Moreover, testing whether a particular point x is within ǫj

of V0 within Sj can be done by branching based on polynomial inequalities
with integer coefficients.

The final algorithm will be organized as follows. Given an input x, de-
termine by branching whether x is in Sj and within the corresponding ǫj

of a component V0. If that is the case, evaluate p(x) using the algorithm
that is accurate in Sj in that neighbourhood of V0. For x not in any of
the neighbourhoods, evaluate p by Horner’s rule. Since the polynomial p is
strictly positive off the neighbourhoods of the components of its variety, the
reasoning of Section 3.2 applies, showing that the Horner’s rule algorithm is
accurate. If x is on the boundary of a set Sj , any applicable algorithm will
do, since the inequalities we use are not strict. Thus the resulting algorithm
for evaluating p will have the desired accuracy η.

3.3.7. Obstacles to a complete inductive procedure

The results of the previous sections suggest the existence of an inductive pro-
cedure that could be used to determine whether or not a given polynomial
is accurately evaluable by reducing the problem for the original polynomial
p to the same problem for its dominant terms, then their dominant terms,
and so forth, going all the way to ‘base’ cases: monomials or other polyno-
mials that are easy to analyse. In order to work, the dominant terms would
have to be simpler, or smaller, by some measure, than the original polyno-
mial; this would require finding an induction variable that gets reduced at
each step.

The most obvious two choices are the number of variables or the degree
of the polynomial under consideration; unfortunately, there are cases when
both fail to decrease. Furthermore, the dominant term may even coincide

Accurate, efficient expression evaluation and linear algebra 125

with the polynomial itself. For example, if

p(x) = A(x[3:n])x
2
1 + B(x[3:n])x1x2 + C(x[3:n])x

2
2,

where A, B, C are non-negative polynomials in x3 through xn, then the
only useful dominant term of p in the neighbourhood of the set x1 = x2 = 0
is the polynomial p itself. For this case, analysing the dominant term yields
no progress whatsoever.

Another possibility is induction on domains or slices of space, but we do
not yet envision how to make this idea precise, since we do not know exactly
when a given polynomial is accurately evaluable on a given domain.

Further work to establish a full decision procedure is therefore highly
desirable.

3.4. Extended arithmetic

In this section, we consider adding ‘black-box’ real or complex polynomial
operations to the basic, traditional model. We describe this type of opera-
tion below.

Definition 3.30. We call a black-box operation any type of operation
that takes a number of inputs (real or complex) x1, . . . , xk and produces an
output q such that q is a polynomial in x1, . . . , xk.

Example 3.31. q(x1, x2, x3) = x1 + x2x3.

Note that +,−, and · are all black-box operations on two inputs.
Consider a fixed set of multivariate polynomials {qj : j ∈ J} with real

or complex inputs (perhaps infinite). In the extended arithmetic model,
the operations allowed are the black-box operations q1, . . . , qk, and nega-
tion. With the exception of negation, which is exact, all the others yield
rnd(op(a1, . . . , al)) = op(a1, . . . , al)(1+δ), with |δ| < ǫ (ǫ being the machine
precision). We consider the same arithmetic models as in Section 3.1, with
this extended class of operations.

3.4.1. Necessity: real and complex

In order to analyse the way in which the necessity condition for having an al-
lowable variety (Theorem 3.10) changes under these extended assumptions,
we need to introduce a new, more general definition of allowability.

Essentially, a black box for computing p can be used for computing other
polynomials, namely all the polynomials obtainable from p via permuting,
repeating, negating, and zeroing some subset of the variables. Therefore
each black box accounts for a potentially larger set of polynomials that
can be evaluated with a single rounding error, using that black box, and
we must consider all of them in our analysis. Note that in the traditional

126 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

case (when we had addition, subtraction, and multiplication of two num-
bers as our black boxes) our set of three operations was closed under the
aforementioned changes.

The definition below formalizes the set of polynomials obtainable from a
given one, through this process of negation, repetition, permutation, and
zeroing of variables.

Recall that we denote by S the space of variables (which may be either
R

n or C
n). From now on we will denote the set {1, . . . , n} by K, and the

set of pairs (i, j) ∈ K ×K such that i < j by K2
<.

Definition 3.32. Let p(x1, . . . , xn) be a multivariate polynomial over S
with variety V (p). Let KZ ⊆ K, and let KD,KS ⊆ K2

< . Modify p as
follows: impose conditions of the type Zi for each i ∈ KZ , and of type Dij ,
respectively Sij , on all pairs of variables in KD, respectively KS . Rewrite p
subject to those conditions (e.g., set Xi = 0 for all i ∈ KZ), and denote it
by p̃, and denote by KR the set of remaining independent variables (use the
convention which eliminates the second variable in each pair in KD or KS).

Choose a set T ⊆ KR, and let

VT,KZ ,KD,KS
(p) = ∩αV (qα),

where the polynomials qα are the coefficients of the expansion of p̃ in the
variables xT :

p̃(x1, . . . , xk) =
∑

α

qαxα
T ,

with qα being polynomials in xKR\T only.
Finally, let KN be a subset of KR \ T . We negate each variable in KN ,

and let VT,KZ ,KD,KS ,KN
(p) be the variety obtained from VT,KZ ,KD,KS

(p), with
each variable in KN negated.

For simplicity, we denote a set (T,KZ ,KD,KS ,KN) by I.
We illustrate this process by the following example.

Example 3.33. Let p(x, y, z) = x + y · z (the fused multiply-add). We
record below some of the possibilities for the subvarieties VI(p); the sets
I = (T,KZ ,KD,KS ,KN) are implicit:

V (p(x, 0, z)) = {x = 0},

V (p(x, x, x)) = {x = 0} ∪ {x = −1},

V (p(0, y, z)) = {y = 0} ∪ {z = 0},

V (p(x, y,−x)) = {x = 0} ∪ {y = 1},

V (p(x, y, y)) = {x + y2 = 0},

V (p(x, y,−z)) = {x − yz = 0}.

Accurate, efficient expression evaluation and linear algebra 127

We include the ‘traditional’ operations in the arithmetic by the definitions
q−2(x1, x2) = x1x2, q−1(x1, x2) = x1 + x2, and q0(x1, x2) = x1 − x2, and
note that the sets

Zi = {x : xi = 0}, (3.8)

Sij = {x : xi + xj = 0}, (3.9)

Dij = {x : xi − xj = 0} (3.10)

describe all non-trivial sets of type VI , for q−2, q−1, and q0.
We will assume from now on that the black-box operations qj with j ∈ J

(J may be infinite, and {−2,−1, 0} ⊂ J) are given and fixed.

Definition 3.34. We call any set VI(qj) with I = (T,KZ ,KD,KS ,KN)
as defined above and qj a black-box operation basic q-allowable.

We call any set R irreducible q-allowable if it is an irreducible compo-
nent of a (finite) intersection of basic q-allowable sets, i.e., when R is irre-
ducible and

R ⊆ ∩l Ql,

where each Ql is a basic q-allowable set.
We call any set Q q-allowable if it is a (finite) union of irreducible q-

allowable sets, i.e.,
Q = ∪jRj ,

where each Rj is an irreducible q-allowable set.
Any set R which is not q-allowable we call q-unallowable.

Note that the above definition of q-allowability is closed under taking
union, intersection, and irreducible components. This parallels the defini-
tion of allowability for the classical arithmetic case: in the classical case,
every allowable set was already irreducible (being an intersection of hyper-
planes).

Definition 3.35. Given a polynomial p with q-unallowable variety V (p),
consider all sets W that are q-allowable (as in Definition 3.34), and subtract
from V (p) those W for which W ⊂ V (p). We call the remaining subset of
the variety points in general position and denote it by G(p).

Since V (p) is q-unallowable, G(p) is non-empty.

Definition 3.36. Given x ∈ S, define the set q-Allow(x) as the intersec-
tion of all basic q-allowable sets going through x:

q-Allow(x) := ∩j∈J

(
∩I : x∈VI(qj) VI(qj)

)
,

for all possible choices of I. The intersection in parentheses is S whenever
x /∈ VI(qj) for all I.

Note that when x ∈ G(p), q-Allow(x) �⊆ G(p).

128 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

We can now state our necessity condition.

Theorem 3.37. Given the black-box operations {qj : j ∈ J}, and the
model of arithmetic described above, let p be a polynomial defined over a
domain D ⊂ S. Let G(p) be the set of points in general position on the
variety V (p). If there exists x ∈ D∩G(p) such that q-Allow(x)∩ Int(D) �= ∅,
then p is not accurately evaluable on D.

Proof of Theorem 3.37. The proof mimics the proof of Theorem 3.10; once
again, we trace back zeros to what we now call q-allowable conditions, and
make use of the DAG structure of the algorithm. In the non-branching case,
we obtain that if the algorithm is run on an input x ∈ G(p), then either
pcomp(x, δ) �= 0 for almost all δ, or pcomp(y, δ) = 0 for all y ∈ Allow(x)\V (p)
and for all δ. The proof for the branching case is again a refinement of the
proof for the non-branching one.

Note that if we consider only algorithms without branching, Theorem 3.37
remains true in the tighter case when we drop the irreducibility constraint
from the definition of allowability.

We can also show that, arbitrarily close to any point x ∈ G(p), we can
find sets S of positive measure such that the relative accuracy of the al-
gorithm when run with inputs in S is either 1 or ∞; a result identical to
Corollary 3.11 can also be proved for the extended arithmetic case.

3.4.2. Sufficiency: the complex case

In this section we obtain a sufficiency condition for the accurate evaluabil-
ity of a complex polynomial, given a black-box arithmetic with operations
{qj | j ∈ J} (J may be an infinite set).

Throughout this section, we assume our black-box operations include qc,
which consists of multiplication by a complex constant: qc(x) = c · x. Note
that this operation is natural, and can be performed accurately given only
a suitably accurate approximation of c.

We believe that the sufficiency condition we obtain here is not a necessary
one, in general, but it does subsume the sufficiency condition we found for
the basic complex case with classical arithmetic {+,−, ·}.

Theorem 3.38. (General case)2 Given a polynomial p : C
n → C, with

V (p) a finite union of irreducible varieties VI(qj), for j ∈ J , and I as above,
then p is accurately evaluable.

Theorem 3.39. (Affine case) If all black-box operations qj , j ∈ J are
affine, then a polynomial p : C

n → C is accurately evaluable if and only
if V (p) is a union of varieties VI(qj), for j ∈ J and I as in Definition 3.32.

2 This condition was stated in a slightly weaker form in Demmel et al. (2006).

Accurate, efficient expression evaluation and linear algebra 129

The proofs follow easily from Lemma 3.40.

Lemma 3.40. If all varieties VI(qj)) in the union defined by V (p) are
irreducible (in particular, if they are affine), then p is a product p = c

∏
j pj ,

where each pj is a power of qj or a polynomial obtained from qj by repeating,
negating, or zeroing some of the variables; c is a complex constant. The
argument is identical to the one we gave for the proof of Corollary 3.15, and
it hinges on the irreducibility of the varieties VI(qj)) in the union.

Note that Theorem 3.39 is a more general necessary and sufficient condi-
tion than Theorem 3.12, which only considered having q−2, q−1, and q0 as
operations, and restricted the polynomials to have integer coefficients (thus
eliminating the need for qc).

3.5. Numerical linear algebra consequences

Here we examine the results of Section 2, in light of Section 3. We take
another look at Table 2.1, explaining the strong ‘No’ entries there. Those
entries mean that no accurate algorithms exist even given an arbitrary set
of black-box operations of bounded degree or with a bounded number of
arguments. In other words, arbitrary precision arithmetic is needed for
their accurate solution. This is the case for Toeplitz matrices because, as
discussed earlier, we cannot evaluate their determinants accurately, and
determinants are necessary to get the indicated entries accurately. Fully
off-diagonal submatrices of diagonally dominant matrices are completely
unstructured matrices, and so with irreducible determinants of unbounded
degree. The same is true of M -matrices, except that the submatrix en-
tries are non-positive. Minors of submatrices of non-TN Vandermonde have
factors that are general Schur functions of arbitrary arguments, which can
be irreducible of unbounded degree. We suspect that many other entries
should also be ‘No’.

3.5.1. Validation of our results

If we examine the matrix classes in Table 2.1, we see that their determi-
nants are rational functions whose sets of zeros and of poles are allowable
in traditional arithmetic. By considering numerators and denominators of
these rational functions separately we see that both can be computed accu-
rately (and then, provided that the denominator is not 0, their ratio can be
computed accurately). Incorporating division more formally into our model
to identify necessary and sufficient conditions for accurate evaluability of
rational functions is the subject of ongoing work.

3.5.2. Negative results: accurate evaluation is impossible

Here we examine two classes of matrices for which some or all linear alge-
bra operations are impossible given any set of black boxes with a bounded

130 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

number of arguments: Toeplitz and various classes of Vandermonde that we
define later.

We prove our results by reducing the problem of doing accurate linear
algebra to that of accurately evaluating the determinant and certain minors
(recall that the latter is a necessary condition for the former). What these
results say roughly is that, if one wants to construct an accurate algorithm
for finding the inverse that works for Toeplitz or Vandermonde matrices as
a class, one needs to use arbitrary precision (more on this in Section 4).

We start by examining a more general problem. If the determinants
pn(x) = det Mn×n(x) of a class of n-by-n structured matrices M do not
satisfy the necessity conditions described in Theorem 3.37 for any enumer-
able set of black-box operations (perhaps with other properties, like bounded
degree), then we can conclude that accurate algorithms of the sort described
in the above citations are impossible.

In particular, to satisfy these necessity conditions would require that the
varieties V (pn) be allowable (or q-allowable). For example, if V is a Vander-
monde matrix, then det(V) =

∏
i<j(xi − xj) satisfies this condition, using

only subtraction and multiplication.
The following theorem states a negative condition (which guarantees im-

possibility of existence for algorithm using any enumerable set of black-box
operations of bounded degree).

Theorem 3.41. Let M(x) be an n-by-n structured complex matrix with
determinant pn(x) as described above. Suppose that for any n, pn(x) has an
irreducible factor p̂n(x) whose degree tends to infinity as n tends to infinity.
Then, for any enumerable set of black-box arithmetic operations of bounded
degree, for sufficiently large n it is impossible to accurately evaluate pn(x)
over the complex numbers.

Proof. Let q1, . . . , qm be any finite set of black-box operations. To ob-
tain a contradiction, suppose the complex variety V (pn) satisfies the neces-
sary conditions of Theorem 3.37, i.e., that V (pn) is allowable. This means
that V (pn), which includes the hypersurface V (p̂n) as an irreducible compo-
nent, can be written as the union of irreducible q-allowable sets (by Defini-
tion 3.34). This means that V (p̂n) must itself be equal to an irreducible q-
allowable set (a hypersurface), since representations as unions of irreducible
sets are unique. The irreducible q-allowable sets of codimension 1 are de-
fined by single irreducible polynomials, which are in turn derived by the
process of setting variables equal to one another, to one another’s negation,
or zero (as described in Definitions 3.32 and 3.34), and so have bounded
degree. This contradicts the unboundedness of the degree of V (p̂n).

In the next theorems we apply this result to the set of Toeplitz matrices.
We use the following notation. Let T be an n-by-n Toeplitz matrix, with xj

Accurate, efficient expression evaluation and linear algebra 131

on the jth diagonal, so x0 is on the main diagonal, xn−1 is in the top right
corner, and x1−n is in the bottom left corner. We give the following result
without proof; for a proof, see Demmel et al. (2006).

Theorem 3.42. The determinant of a Toeplitz matrix T is irreducible
over any field.

Therefore, for complex Toeplitz matrices, we have the following corollary.

Corollary 3.43. The determinants of the set of complex Toeplitz matrices
cannot be evaluated accurately using any enumerable set of bounded-degree
black-box operations.

In the real case, irreducibility of pn is not enough to conclude that pn

cannot be evaluated accurately, because VR(pn) may still be allowable (and
even vanish). So we consider another necessary condition for allowability.
Since all black boxes have a finite number of arguments, their associated
codimension-1 irreducible components must have the property that whether
x ∈ VI(qj) depends on only a finite number of components of x. Thus, to
prove that the hypersurface VR(pn) is not allowable, it suffices to find at
least one regular point x∗ in VR(pn) such that the tangent hyperplane at x∗

is not parallel to sufficiently many coordinate directions, i.e., membership
in VR(pn) depends on more variables than any VI(qj). This is easy to do
for real Toeplitz matrices.

Theorem 3.44. Let V be the variety of the determinant of real singular
Toeplitz matrices. Then V has codimension 1, and at almost all regular
points, its tangent hyperplane is parallel to no coordinate directions.

Corollary 3.45. The determinants of the set of real Toeplitz matrices
cannot be evaluated accurately using any enumerable set of bounded-degree
black-box operations.

Proofs of these results can be found in Demmel et al. (2006). Corollaries
3.43 and 3.45 imply that accurate linear algebra (in the sense of Section 2)
is impossible on the class of Toeplitz matrices (either real or complex) in
bounded precision.

We consider now the class of polynomial Vandermonde matrices V , where
Vij = Pj−1(xi) is a polynomial function of xi, with 1 ≤ i, j ≤ n. This

class includes the standard Vandermonde (where Pj−1(xi) = xj−1
i) and

many others.

Consider a generalized Vandermonde matrix where Pj−1(xi) = x
j−1+λn−i

i

with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. The tuple λ = (λ1, λ2, . . . , λn) is called a
partition. Any square submatrix of such a generalized Vandermonde matrix
is also a generalized Vandermonde matrix. A generalized Vandermonde

132 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

matrix is known to have determinant of the form sλ(x)
∏

i<j(xi−xj), where

sλ(x) is a polynomial of degree |λ| =
∑

i λi, and called a Schur function
(Macdonald 1998). In infinitely many variables (not our situation) the Schur
function is irreducible (Farahat 1958), but in finitely many variables, the
Schur function is sometimes irreducible and sometimes not (but there are
irreducible Schur functions of arbitrarily high degree); see Stanley (1999,
Exercise 7.30).

We can thus derive the following theorem and corollary.

Theorem 3.46. By Theorem 3.41, no enumerable set of black-box oper-
ations of bounded degree can compute all Schur functions accurately when
the xi are complex.

Corollary 3.47. No enumerable set of black-box operations of bounded
degree or of bounded number of arguments exists that will accurately evalu-
ate all minors of complex generalized Vandermonde matrices in the generic
case.

If we restrict the domain D to be non-negative real numbers, then the sit-
uation changes: the non-negativity of the coefficients of the Schur functions
shows that they are positive in D, and indeed the generalized Vandermonde
matrix is totally positive (Karlin 1968).

Combined with the homogeneity of the Schur function, Theorem 3.6 im-
plies that the Schur function, and so determinants (and minors) of totally
positive generalized Vandermonde matrices can be evaluated accurately in
classical arithmetic (and the algorithms mentioned in Section 2 are more
efficient than the algorithm used in proving Theorem 3.6).

Now consider a polynomial Vandermonde matrix VP defined by a family
{Pk(x)}k∈N of polynomials such that deg(Pk) = k, and VP (i, j) = Pj−1(xi).
Note that these are included in the class of generalized Vandermonde matri-
ces, and that the difference lies in the fact that for polynomial Vandermonde,
the sequence of degrees is increasing and without gaps.

Note that any VP can be written as VP = V C, with V being a regular
Vandermonde matrix, and C being an upper triangular matrix of coefficients
of the polynomials Pk, i.e.,

Pj−1(x) =

j∑

i=1

C(i, j)xi−1, ∀1 ≤ j ≤ n.

Let ci−1 := D̃(i, i), for all 1 ≤ i ≤ n, denote the highest-order coefficients
of the polynomials P0(x), . . . , Pn−1(x).

The following two results are proved informally in Demmel et al. (2006,
Section 5).

Accurate, efficient expression evaluation and linear algebra 133

Theorem 3.48. The set of principal minors of polynomial Vandermonde
matrices includes polynomials which have irreducible factors of arbitrarily
large degree.

Corollary 3.49. By Theorem 3.41, the set of polynomial Vandermonde
matrices contains matrices whose inverses cannot be evaluated accurately
even with the addition of any enumerable set of bounded-degree black boxes.

We can also say something about the LDU factorizations of polynomial
Vandermonde matrices. With the matrix C being the upper triangular
matrix of coefficients of the polynomials Pk, we can write C = D̃C̃, with D̃
being the diagonal matrix of highest-order coefficients, i.e., D̃(i, i) = C(i, i)
for all 1 ≤ i ≤ n. We will assume that the matrices C and D̃ are given to
us exactly.

If we let VP = LP DP UP and V = LDU , it follows that

LP = L,

DP = DD̃,

UP = D̃−1UC.

Since we cannot compute L accurately in the general Vandermonde case,
it follows that we cannot compute LP accurately in the polynomial Van-
dermonde case. Likewise, neither the SVD nor the symmetric eigenvalue
decomposition (EVD) are computable accurately, but if the polynomials are
certain orthogonal polynomials, then the accurate SVD is possible (Demmel
and Koev 2006), and an accurate symmetric EVD may also be possible
(Dopico et al. 2003).

3.5.3. Positive results: using extended arithmetic

Table 2.1 gathers together structured matrix classes for which it has been
established whether – and which – accurate linear algebra algorithms exist.
For some matrix classes, it was deduced that accurate class-algorithms do
not exist, from the fact that a necessary condition (having an accurately
evaluable determinant) was violated.

In this section, we explain how we can use the sufficiency condition for
complex matrices, developed in Section 3.4.2.

Consider complex polynomial Cauchy matrices, defined (in their simplest
form) as follows. Let p and q be complex polynomials of one variable. Now,
using MATLAB notation, let

xi := p(x̂i), ∀1 ≤ i ≤ m,

yj := q(ŷj), ∀1 ≤ j ≤ m.

Definition 3.50. We call the matrix C = (Cij) with Cij = 1
xi+yj

where

xi and yj are, as above, a polynomial Cauchy matrix.

134 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

Definition 3.51. Let

Q−(x̂i, ŷj) = p(x̂i) − q(ŷj),

Q+(x̂i, ŷj) = p(x̂i) + q(ŷj),

be complex polynomials over C
2.

Recall that the determinant of the Cauchy matrix C is

det C =

∏
i,j(xi − xj)(yi − yj)∏

i,j(xi + yj)
. (3.11)

Although our models of arithmetic do not incorporate division, comput-
ers do perform division by a non-zero number as an accurate operation.
Therefore, given accurate division and black-box algorithms for computing
the polynomials Q− and Q+, one immediately has a simple and accurate
algorithm to evaluate any minor for the matrix C, and therefore any linear
algebra operations can be easily performed on C (this algorithm is guaran-
teed by Theorem 3.38).

In fact, we can obtain a much more general result.

Theorem 3.52. Let Φ be a formula satisfying NIC and depending on
variables x1, . . . , xn. Let p be a polynomial (resp. let {pi}

n
1 be a set of

polynomials), and let xi = p(A(i, 1 : m)) (resp. pi(A(i, 1 : m))) for some
matrix of parameters A.

We can accurately evaluate Φ on the new set of inputs depending on the
parameters of A, provided that we build three (resp. m2 +2m) black boxes,
computing

p,

Q+(y1, . . . , yn, z1, . . . , zn) = p(y1, . . . , yn) + p(z1, . . . , pn),

Q−(y1, . . . , yn, z1, . . . , zn) = p(y1, . . . , yn) − p(z1, . . . , pn),

respectively, for all 1 ≤ i ≤ j ≤ m,

pi,

Q+
ij(y1, . . . , yn, z1, . . . , zn) = pi(y1, . . . , yn) + pj(z1, . . . , pn),

Q−
ij(y1, . . . , yn, z1, . . . , zn) = pi(y1, . . . , yn) − pj(z1, . . . , pn).

Another class of matrices which admit accurate linear algebra algorithms
in extended arithmetic are the Green’s matrices, which arise from discrete
representations of Sturm–Liouville equations. These matrices are inverses
of irreducible tridiagonal matrices.

Accurate, efficient expression evaluation and linear algebra 135

Generic Green’s matrices have a simple four-vector representation (see,
for example, Ikebe (1979) and Nabben (1999)), as

Fi,j =

{
aibj , if i ≥ j,

cidj , if i < j,

for a = (a1, . . . an), b = (b1, . . . , bn), c = (c1, . . . , cn), d = (d1, . . . , dn), and
1 ≤ i, j ≤ n.

The case when a = c and b = d, i.e., the symmetric case, has been partic-
ularly well studied (see Gantmacher and Krein (2002) and Karlin (1968)),
and we describe it in a bit more detail.

We use the notation X
(i1 i2 ... ip
j1 j2 ... jp

)
for the minor of the matrix X corre-

sponding to rows i1, . . . , ip and columns j1, . . . , jp, and
∣∣x y
z t

∣∣ for the deter-
minant (xt − yz).

All minors of symmetric Green’s matrices have the simple representation
(following Karlin (1968))

G

(
i1 i2 . . . ip
j1 j2 . . . jp

)
= ak1

∣∣∣∣
ak2 al1

bk2 bl1

∣∣∣∣
∣∣∣∣
ak3 al2

bk3 bl2

∣∣∣∣ · · ·
∣∣∣∣
akp alp−1

bkp blp−1

∣∣∣∣blp ,

where km = min(im, jm) and lm = max(im, jm).
Similarly, all minors of generic Green’s matrices can be shown (by a sim-

ple inductive argument) to be either 0 or products of linear and quadratic
factors. Here, by ‘linear factor’ we mean a factor of the type ai, bj , ck, or
dl, and by ‘quadratic factor’ we mean a factor of the type xt − yz, with x,
y, t, z being entries of a, b, c, d.

We can then conclude that, given a black box computing p(x, y, z, t) :=
xt− yz accurately, by Theorem 3.38 one can compute all minors of generic
Green’s matrices. Therefore, as was observed in Demmel and Koev (2001),
one can evaluate all the minors of generic Green’s matrices, and conse-
quently perform linear algebra accurately.

Green’s matrices belong to the class of hierarchically semi-separable (HSS)
matrices. There are many definitions of the latter, one of them being that
HSS matrices of order k ∈ N are matrices for which any off-diagonal sub-
matrix has rank no bigger than k. Other examples are tridiagonal matrices,
banded matrices, inverses of banded matrices, etc. The HSS matrices are
extremely useful as preconditioners, and arise in many applications. Since
determinants of tridiagonal matrices with independent indeterminates as
entries are irreducible, and tridiagonals are special cases of HSS matrices,
some (and perhaps all) HSS matrices do have irreducible determinants.

Still, we believe that further investigation of the large class of HSS ma-
trices may yield other examples of subclasses for which simple black-box
operations could be constructed in order to accurately compute minors,
and therefore, be able to perform linear algebra accurately.

136 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

4. Other models of arithmetic

Though the arithmetic models in this paper use real (or complex) numbers
and rounding errors, our goal is to draw conclusions about practical finite
precision computation, i.e., with numbers represented as finite bit strings
(e.g., floating-point numbers). In such a bit model, all rational functions
of the arguments can be computed accurately, even exactly, because the
arguments are rational; the only question is cost. In this section we draw
conclusions about cost from our analysis.

We would like to quantify our intuition that, for example, it is much
cheaper to accurately compute the determinant of an n-by-n Vandermonde
matrix with the familiar formula than with Gaussian elimination with suf-
ficiently high-precision arithmetic. We do not mean the difference between
O(n2) and O(n3) arithmetic operations, but the difference in cost between
low-precision and high-precision arithmetic. To quantify this cost, we need
to pick a number representation.

We will assume that ‘failure’ is not allowed, i.e., neither overflow nor
underflow is permitted, so that intermediate (and final) results can grow or
shrink in magnitude as needed to complete the computation.

We claim that the natural representation to use is the pair of integers
(e, m) to represent m · 2e, i.e., binary floating point. Pros and cons of
various number models are discussed in Demmel et al. (2006), but we re-
strict ourselves here to explaining why we choose floating as opposed to
fixed point, which is also widely used for analysis (in fixed point, m · 2e

would be represented using up to e explicit zeros before or after the bits
representing m).

One can of course represent the same set of (binary) rational numbers in
both fixed and floating point, but floating point is much more compressed: it
takes about log2 |e|+log2 |m| bits to represent (e, m), but about |e|+log2 |m|
bits to represent m · 2e in fixed point, which is exponentially larger.

First, as a result of this possibly exponentially greater use of space by
fixed point, it is possible for a sequence of n fixed-point arithmetic opera-
tions to take time exponential in n (repeated squaring doubles the length
of result at each step, even if only a fixed number of the most significant
bits are kept). In contrast, n floating-point arithmetic operations, with
fixed relative error, take time that grows at worst like O(n2) (attained by
repeated squaring again, which adds one bit to e at each squaring). In
particular, any of the expressions in earlier sections of this paper can be
evaluated in polynomial time in the size of the expression, and the size of
their floating-point arguments.

Second, this exponentially greater use of space in fixed point means that
algorithms can appear ‘artificially’ cheaper, because they are only polyno-
mial in the input size |e| + log2 |m|, whereas they would not be polynomial

Accurate, efficient expression evaluation and linear algebra 137

as a function of the input size measured as log2 |e|+log2 |m|. (This is analo-
gous to asking whether an algorithm with integer inputs runs in polynomial
time or not, depending on whether the inputs are represented in unary or
binary.) For example, it is possible to accurately compute the determinant
of a general matrix with fixed-point entries in polynomial time in the size
of the input (Clarkson 1992), but we know of no such polynomial-time al-
gorithm with floating-point entries. Running a conventional determinant
algorithm (e.g., Gaussian elimination with pivoting) in high enough preci-
sion would require roughly log2 κ(A) = log2(‖A‖ · ‖A−1‖) bits of precision,
which can grow like |e| rather than log2 |e|; e.g., consider

A =

[
y − x y

y y + x

]

for y ≫ x, where det(A) = −x2.
Indeed, the obvious ‘witness’ to identify a singular matrix, a null vector,

can have exponentially more non-zero bits than the matrix, as the following
example shows. Consider the (2n+1)-by-(2n+1) tridiagonal matrix T with
1s on the subdiagonal, −1s on the superdiagonal, and

diag(T) = [x1, x2, . . . , xn−1, xn, 0,−xn,−xn−1, . . . ,−x2,−x1].

It is easy to confirm that T is singular, with right null vector

v = [1, p1, p2, . . . , p2n],

where pi = det(T (1 : i, 1 : i)) is a leading principal minor. If we let xi = 2ei

with e1 = 0, e2 = 1, and ei ≥ ei−1 + ei−2, then one can confirm for i ≤ n
that pi is an integer with fi non-zero bits, where f1 = 1, f2 = 2, and
fi = fi−1 + fi−2 is the Fibonacci sequence. Since fi grows exponentially,
the null vector v has exponentially many bits as a function of n, whereas
the size of T is at most O(n log en), which can be as small as O(n2).

Another way to see the difference between fixed and floating point is to
consider the simple expression

∏n
i=1(1 + xi). If the xi are supplied in fixed

point, the entire expression can be computed exactly in polynomial time.
However, in floating point, though the leading bits and trailing bits are
easy, computing some of the bits is as hard as computing the permanent, a
problem widely believed to have exponential complexity in n (Valiant 1979).

Here is the reduction to the permanent.3 Let A be an n-by-n matrix whose
entries are 0s and 1s. The permanent is the same as the determinant, except
that all terms in the Laplace expansion are added, instead of some being
added and some subtracted. Let ri and cj be independent indeterminates,

3 We acknowledge Benjamin Diament for having discovered the result relating floating-
point complexity to the permanent.

138 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

and consider the multivariate polynomial

p(r1, . . . , rn, c1, . . . , cn) =
∏

Aij �=0

(1 + ricj). (4.1)

Then the coefficient k of
∏n

i=1 rici in the expansion of p can be seen to be the
permanent. Next we replace ri and cj by sufficiently widely spaced powers
of 2, so that every coefficient of every term in the expansion of p appears in
non-overlapping bits of p evaluated at these powers of 2. Since no coefficient
can exceed 2n2

, and since the sequence of exponents (fn, . . . , f1, en, . . . , e1)

in any term
∏n

i=1 rei
i cfi

i of p can be thought of as the unique expansion of

a number in base n + 1, one can see that choosing ri = 2n2(n+1)i−1
and

cj = 2n2(n+1)n+j−1
suffices. The biggest-possible product ricj is

rncn = 2n2((n+1)n−1+(n+1)2n−1) ≤ 22n2(n+1)2n
,

where the exponent takes at most log2(2n2(n + 1)2n) = O(n log n) bits to
represent, so all the arguments ricj in the product in (4.1) take O(n3 log n)
bits to represent.

Now we consider ‘black-box arithmetic’, whose purpose is to model the
use of subroutine libraries with selected high-accuracy operations. We claim
that any multivariate polynomial (‘black box’) with t terms of maximum
degree d, can be evaluated accurately in polynomial time as a function of d,
t and the size of the input floating-point numbers. The algorithm is simply
to evaluate each term exactly, and then sum them in decreasing order of
exponents, using a register of about log2 t bits more than needed to store
the longer term exactly (Demmel and Koev 2004a, Demmel and Hida 2003).
In particular, any enumerable collection of black boxes that are all bounded
in degree d and number of terms t can all be thought of as running in
time polynomial in the size of their floating-point arguments, just like the
basic operations of addition, subtraction and multiplication. If the number
of terms t is proportional to the number of inputs (e.g., dot products of
vectors of length t), then the cost is still polynomial in the input size.

In summary, in a natural floating-point model of arithmetic, the algo-
rithms we have discussed run in polynomial time in the size of the inputs,
whereas simply running a conventional algorithm in sufficiently high preci-
sion arithmetic to get the answer accurately can take exponentially longer.
We know of no guaranteed polynomial-time alternatives to our algorithms.

5. Structured condition numbers

In this section we begin by recalling some attractive properties of struc-
tured condition numbers for problems that we can solve accurately, and
discuss possible generalizations. If our problem is evaluating the function

Accurate, efficient expression evaluation and linear algebra 139

p(x1, . . . , xn), then the structured condition number κstruct is simply the
derivative of the relative change in p with respect to relative changes in its
arguments:

κstruct =

∥∥(
x1

∂p
∂x1

, . . . , xn
∂p

∂xn

)∥∥
|p|

, (5.1)

where any vector norm may be used in the numerator.
The simplest case, as before, is for problems described by Theorem 5.12

and Corollary 5.15, which say that in the complex case, a necessary and
sufficient condition for accurate evaluation of complex p(x) using only tra-
ditional arithmetic (± and ×) is that V (p) be allowable, in which case p(x)
factors completely into factors of the forms xα

i , and (xi ±xj)
β , where α and

β are fixed integers. This covers many of the linear algebra examples in
Section 2. Given such a simple expression it is easy to evaluate the struc-
tured condition number: each factor xα

i adds α to
(
xi

∂p
∂xi

)
/p, and each factor

(xi ± xj)
β adds

|βxi/(xi ± xj)| ≤ |β|/rel gap(xi,∓xj).

Slightly more generally, for expressions satisfying NIC, e.g., including real
expressions that only add like-signed values, analogous conclusions can be
drawn. This is because factors that only add like-signed values can only
make bounded contributions to the condition number.

Given a structured condition number for a decomposition such as LDU

with complete pivoting (an RRD), this essentially becomes a structured
condition number for the SVD (Demmel et al. 1999, Theorem 2.1).

Now we consider the set of ill-posed problems, i.e., the ones whose struc-
tured condition numbers are infinite. Examining (5.1), we see that p = 0
is a necessary condition, i.e., the ill-posed problems are a subset of V (p).
(If p(x) were rational, we would include the poles as well.) For every term
|β|/rel gap(xi,∓xj) in the structured condition number, the corresponding
ill-posed set is defined by xi = ∓xj . All of V (p) is not necessarily ill-posed,
since, for example, small relative changes in x only cause small relative
changes in p(x) = xα.

It is natural to ask if there is a relationship between the distance to the

nearest ill-posed problem, i.e., the smallest relative change to the xi that
make the problem ill-posed, and its structured condition number (Demmel
1987). It is easy to see that for any term |β|/rel gap(xi,∓xj) in the struc-
tured condition number, the smallest relative changes to xi and ∓xj that
make it infinite are close to rel gap(xi,∓xj) when it is small. In other
words, the structured condition number is close to the reciprocal of the
distance to the nearest ill-posed problem, measured by the smallest relative
change to the arguments xi. This helps explain geometrically why the struc-
tured condition number can be so much smaller than the unstructured one:

140 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

it takes, for example, a much larger perturbation to make xi = i − 1/2 and
xj = j − 1/2 equal than the smallest singular value of the Hilbert matrix
Hij = 1/(xi + xj).

This reciprocal-condition-number property, that the reciprocal of the con-
dition number is approximately the distance to the nearest ill-posed prob-
lem, is common in numerical analysis (Demmel 1987, Rump 1999a, 2003a).
The following simple asymptotic argument shows why.

If the structured condition number (5.1) is very large, then some com-
ponent ∣∣∣∣xi

∂p

∂xi
/p

∣∣∣∣ ≫ 1,

that is, ∣∣∣∣p/
∂p

∂xi

∣∣∣∣ ≪ |xi|,

or in other words one step of Newton’s method

xnew
i = xi − p/

∂p

∂xi

to find a root of p = 0 will take a very small step. Therefore it is plausible
that this step p/ ∂p

∂xi
is very close to the smallest (absolute) distance to the

variety in the xi direction (or the multiplicity of the root times p/ ∂p
∂xi

is very

close to the distance) and dividing by |xi| yields the relative distance.
Now let us go beyond expressions evaluable accurately just using NIC.

Consider the case of a real positive polynomial or empty variety, as discussed
in Section 3.2. The analysis in Theorem 3.5 (resp. Theorem 3.6) shows that
the relative condition number will grow like 1/pmin (resp. 1/pmin,homo), the
reciprocal of the smallest value p(x) can take on the appropriate domain.
So the relative condition number can be arbitrarily large, but in the absence
of a variety intersecting the domain it remains bounded.

Based on these examples and analysis, we conjecture that for traditional
arithmetic, the following two statements hold.

(1) The reciprocal of the structured condition number is an approximation
of the relative distance from x to the nearest ill-posed problem, perhaps
asymptotically.

(2) This relative distance is approximately given by rel gap(xi,∓xj) for
some i and j.

This reciprocal-condition-number property is quite robust as the argu-
ments above suggest, and does not necessarily depend on accurate evalua-
bility. For example, if p(x) = (x1 + x2 + x3)

α then its structured condition
number is α‖x‖/|x1 +x2 +x3|, and |x1 +x2 +x3|/‖x‖1 is indeed the relative

Accurate, efficient expression evaluation and linear algebra 141

distance. However, the reciprocal-condition-number property is not univer-
sal but depends on the structure we impose (Rump 1998, 1999b, 2003b).
Just as this reciprocal-condition-number property is equivalent to the state-
ment that computing the condition number is as sensitive a problem as
solving the original problem, we conjecture that the structured condition
number κstruct can only be computed accurately if the original problem p
can be, at least in the interesting case when κstruct is large. This seems
reasonable since p(x) ends up in the denominator of κstruct, so we need to
evaluate p accurately near its zeros (or poles). But the numerators ∂p/∂xi

could be anything, and perhaps even have zeros on unallowable varieties,
so to be more precise we conjecture that p can be evaluated accurately in
some open neighbourhood of its zeros (or poles) if and only if κstruct can be.

6. Conclusions

In this paper, we have made the case for accurate evaluation of polynomial
expressions and accurate linear algebra; we have shown that such evaluation
is desirable (Section 1), significant (Section 4) and often realizable efficiently
(Section 2). We have listed, in Section 2, many types of structured matrices
that have been analysed from an accuracy perspective in the numerical lin-
ear algebra literature, while in Section 3 we identified the common algebraic
structure that made them analysable in the first place.

There are limits to how much we can hope to extend the class of structured
matrices for which linear algebra can be performed accurately; the ‘negative
examples’ of Section 3.5 show that, for some classes of matrices, accuracy
cannot be achieved in finite precision, and both Sections 2 and 3 mention
problems that are impossible to solve in ‘traditional’ arithmetic. The former
should be seen as ‘hard’ barriers, but the latter should be seen as a challenge,
both from theoretical and computational perspectives. The theory should
aim to provide answers to the question of how to extend one’s arithmetic by
adding ‘black-box’ operations, in order to make these structured problems
solvable (as we do for the examples of Section 2.3); the computation should
design software implementing such ‘black boxes’.

In summary, accurate evaluation is an important area of scientific comput-
ing, which has been advanced by the recent results presented here. Plenty
of work remains in adding to both the theoretical framework (which appar-
ently requires familiarity with ‘pure’ mathematical fields such as algebraic
geometry, topology, and analysis) and to the practical one (software imple-
mentation).

142 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

REFERENCES

A. V. Aho, J. E. Hopcroft and J. D. Ullman (1975), The Design and Analysis of

Computer Algorithms, second printing, Addison-Wesley Series in Computer
Science and Information Processing.

A. S. Alfa, J. Xue and Q. Ye (2002), ‘Accurate computation of the smallest eigen-
value of a diagonally dominant M -matrix’, Math. Comp. 71, 217–236 (elec-
tronic).

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Blackford and D. Sorensen (1999),
LAPACK Users’ Guide, third edn, SIAM, Philadelphia.

Å. Björck and V. Pereyra (1970), ‘Solution of Vandermonde systems of equations’,
Math. Comp. 24, 893–903.

E. Boman, B. Hendrickson and S. Vavasis (2004), ‘Solving elliptic finite element sys-
tems in near-linear time with support preconditioners’, arXiv.org:cs/0407022.

T. Boros, T. Kailath and V. Olshevsky (1999), ‘A fast Björck–Pereyra-type algo-
rithm for parallel solution of Cauchy linear equations’, Linear Algebra Appl.

302/303, 265–293.
T. Chan (1987), ‘Rank revealing QR factorizations’, Linear Algebra Appl. 88/89,

67–82.
S. Chandrasekaran and I. Ipsen (1994), ‘On rank-revealing QR factorizations’,

SIAM J. Matrix Anal. Appl.

K. Clarkson (1992), Safe and effective determinant evaluation, in 33rd Annual

Symposium on Foundations of Computer Science, pp. 387–395.
J. Demmel (1987), ‘On condition numbers and the distance to the nearest ill-posed

problem’, Numer. Math. 51, 251–289.
J. Demmel (1999), ‘Accurate singular value decompositions of structured matrices’,

SIAM J. Matrix Anal. Appl. 21, 562–580 (electronic).
J. Demmel and W. Gragg (1993), ‘On computing accurate singular values and

eigenvalues of acyclic matrices’, Linear Algebra Appl. 185, 203–218.
J. Demmel and Y. Hida (2003), ‘Accurate and efficient floating point summation’,

SIAM J. Sci. Comput. 25, 1214–1248.
J. Demmel and W. Kahan (1990), ‘Accurate singular values of bidiagonal matrices’,

SIAM J. Sci. Statist. Comput. 11, 873–912.
J. Demmel and P. Koev (2001), Necessary and sufficient conditions for accurate and

efficient rational function evaluation and factorizations of rational matrices.
In Structured Matrices in Mathematics, Computer Science, and Engineer-

ing II (Boulder, CO, 1999), Vol. 281 of Contemporary Mathematics, AMS,
Providence, RI, pp. 117–143.

J. Demmel and P. Koev (2004a), Accurate and efficient algorithms for floating point
computation. In Applied Mathematics Entering the 21st Century, SIAM,
Philadelphia, PA, pp. 73–88.

J. Demmel and P. Koev (2004b), ‘Accurate SVDs of weakly diagonally dominant
M -matrices’, Numer. Math. 98, 99–104.

J. Demmel and P. Koev (2005), ‘The accurate and efficient solution of a totally pos-
itive generalized Vandermonde linear system’, SIAM J. Matrix Anal. Appl.

27, 142–152 (electronic).

Accurate, efficient expression evaluation and linear algebra 143

J. Demmel and P. Koev (2006), ‘Accurate SVDs of polynomial Vandermonde matri-
ces involving orthonormal polynomials’, Linear Algebra Appl. 417, 382–396.

J. Demmel and K. Veselić (1992), ‘Jacobi’s method is more accurate than QR’,
SIAM J. Matrix Anal. Appl. 13, 1204–1246.

J. Demmel, B. Diament and G. Malajovich (2001), ‘On the complexity of comput-
ing error bounds’, in Found. Comput. Math. 1, 101–125.

J. Demmel, I. Dumitriu and O. Holtz (2006), Toward accurate polynomial evalu-
ation in rounded arithmetic. In Foundations of Computational Mathematics

(Santander 2005), Vol. 331 of London Mathematical Society Lecture Notes,
Cambridge University Press, Cambridge, pp. 36–105.

J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić and Z. Drmač (1999),
‘Computing the singular value decomposition with high relative accuracy’,
Linear Algebra Appl. 299, 21–80.

F. M. Dopico, J. M. Molera and J. Moro (2003), ‘An orthogonal high relative
accuracy algorithm for the symmetric eigenproblem’, SIAM J. Matrix Anal.

Appl. 25, 301–351 (electronic).
Z. Drmač (1998), ‘Accurate computation of the product induced singular value

decomposition with applications’, SIAM J. Numer. Anal. 35, 1969–1994.
S. Eisenstat and I. Ipsen (1995), ‘Relative perturbation techniques for singular

value problems’, SIAM J. Numer. Anal.

S. M. Fallat (2001), ‘Bidiagonal factorizations of totally nonnegative matrices’,
Amer. Math. Monthly 108, 697–712.

H. K. Farahat (1958), ‘On Schur functions’, Proc. London Math. Soc. (3) 8, 621–
630.

F. P. Gantmacher and M. G. Krein (2002), Oscillation Matrices and Kernels and

Small Vibrations of Mechanical Systems, revised edn, AMS Chelsea Publish-
ing, Providence, RI. Translation based on the 1941 Russian original.

M. Gasca and J. M. Peña (1992), ‘Total positivity and Neville elimination’, Linear

Algebra Appl. 165, 25–44.
M. Gasca and J. M. Peña (1996), On factorizations of totally positive matrices, in

Total Positivity and its Applications, Kluwer, Dordrecht, pp. 109–130.
M. Gu and S. Eisenstat (1996), ‘An efficient algorithm for computing a strong

rank-revealing QR factorization’, SIAM J. Sci. Comput. 17, 848–869.
N. J. Higham (1987), ‘Error analysis of the Björck–Pereyra algorithms for solving

Vandermonde systems’, Numer. Math. 50, 613–632.
N. J. Higham (1988), ‘Fast solution of Vandermonde-like systems involving orthog-

onal polynomials’, IMA J. Numer. Anal. 8, 473–486.
N. J. Higham (1990), ‘Stability analysis of algorithms for solving confluent

Vandermonde-like systems’, SIAM J. Matrix Anal. Appl. 11, 23–41.
O. Holtz (2005), ‘The inverse eigenvalue problem for symmetric anti-bidiagonal

matrices’, Linear Algebra Appl. 408, 268–274.
P. Hong and C. T. Pan (1992), ‘Rank-revealing QR factorizations and the singular

value decomposition’, Math. Comp. 58, 213–232.
T.-M. Hwang, W.-W. Lin and E. K. Yang (1992), ‘Rank revealing LU factorization’,

Linear Algebra Appl. 175, 115–141.
Y. Ikebe (1979), ‘On inverses of Hessenberg matrices’, Linear Algebra Appl. 24,

93–97.

144 J. Demmel, I. Dumitriu, O. Holtz and P. Koev

W. Kahan and I. Farkas (1963a), ‘Algorithm 167: Calculation of confluent divided
differences’, Commun. ACM 6, 164–165.

W. Kahan and I. Farkas (1963b), ‘Algorithm 168: Newton interpolation with back-
ward divided differences’, Commun. ACM 6, 165.

W. Kahan and I. Farkas (1963c), ‘Algorithm 169: Newton interpolation with for-
ward divided differences’, Commun. ACM 6, 165.

T. Kailath and V. Olshevsky (1995), ‘Displacement structure approach to Cheby-
shev–Vandermonde and related matrices’, Integral Equations Operator The-

ory 22, 65–92.
T. Kailath and V. Olshevsky (1997), ‘Displacement-structure approach to polyno-

mial Vandermonde and related matrices’, Linear Algebra Appl. 261, 49–90.
S. Karlin (1968), Total Positivity , Vol. I, Stanford University Press, Stanford, CA.
P. Koev (2005), ‘Accurate eigenvalues and SVDs of totally nonnegative matrices’,

SIAM J. Matrix Anal. Appl. 27, 1–23 (electronic).
P. Koev (2007), ‘Accurate computations with totally nonnegative matrices’, SIAM

J. Matrix Anal. Appl. 29, 731–751.
P. Koev and F. Dopico (2007), ‘Accurate eigenvalues of certain sign regular matri-

ces’, Linear Algebra Appl. 424, 435–447.
R.-C. Li (1999), ‘Relative perturbation theory II: Eigenspace and singular subspace

variations’, SIAM J. Matrix Anal. Appl. 20, 471–492 (electronic).
I. G. Macdonald (1998), Symmetric Functions and Orthogonal Polynomials, Vol. 12

of University Lecture Series, AMS, Providence, RI.
A. Marco and J.-J. Mart́ınez (2007), ‘A fast and accurate algorithm for solving

Bernstein–Vandermonde linear systems’, Linear Algebra Appl. 422, 616–628.
J. J. Mart́ınez and J. M. Peña (1998), ‘Fast algorithms of Björck–Pereyra type

for solving Cauchy–Vandermonde linear systems’, Appl. Numer. Math. 26,
343–352.

J. J. Mart́ınez and J. M. Peña (1998), ‘Factorizations of Cauchy–Vandermonde
matrices’, Linear Algebra Appl. 284, 229–237.

J. J. Mart́ınez and J. M. Peña (2003), Factorizations of Cauchy–Vandermonde
matrices with one multiple pole. In Recent Research on Pure and Applied

Algebra, Nova Scientific, Hauppauge, NY, pp. 85–95.
The MathWorks (1992), MATLAB Reference Guide, The MathWorks, Natick, MA.
R. Mathias (1996), ‘Accurate eigensystem computations by Jacobi methods’, SIAM

J. Matrix Anal. Appl. 16, 977–1003.
E. Miller and B. Sturmfels (2005), Combinatorial Commutative Algebra, Vol. 227

of Graduate Texts in Mathematics, Springer, New York.
L. Miranian and M. Gu (2003), ‘Strong rank revealing LU factorizations’, Linear

Algebra Appl. 367, 1–16.
R. Nabben (1999), ‘Decay rates of the inverse of nonsymmetric tridiagonal and

band matrices’, SIAM J. Matrix Anal. Appl. 20, 820–837.
C. O’Cinneide (1996), ‘Relative-error for the LU decomposition via the GTH algo-

rithm’, Numer. Math. 73, 507–519.
B. Parlett (1995), The new qd algorithms, in Acta Numerica, Vol. 4, Cambridge

University Press, pp. 459–491.
M. J. Peláez and J. Moro (2006), ‘Accurate factorization and eigenvalue algo-

rithms for symmetric DSTU and TSC matrices’, SIAM J. Matrix Anal. Appl.

28, 1173–1198 (electronic).

Accurate, efficient expression evaluation and linear algebra 145

J. M. Peña (2004), ‘LDU decompositions with L and U well conditioned’, Electron.

Trans. Numer. Anal. 18, 198–208 (electronic).
J. Renegar (1992), ‘On the computational complexity and geometry of the first-

order theory of the reals I: Introduction. Preliminaries. The geometry of semi-
algebraic sets. The decision problem for the existential theory of the reals’,
J. Symbolic Comput. 13, 255–299.

B. Reznick (2000), Some Concrete Aspects of Hilbert’s 17th Problem, Vol. 253 of
Contemporary Mathematics, AMS.

S. Rump (1998), ‘Structured perturbations and symmetric matrices’, Linear Alge-

bra Appl. 278, 121–132.
S. Rump (1999a), ‘Ill-conditioned matrices are componentwise near to singularity’,

SIAM Review 41, 102–112.
S. Rump (1999b), ‘Ill-conditionedness need not be componentwise near to ill-

posedness for least squares problems’, BIT 39, 143–151.
S. Rump (2003a), ‘Structured perturbations I: Normwise distances’, SIAM J. Ma-

trix Anal. Appl. 25, 1–30.
S. Rump (2003b), ‘Structured perturbations II: Componentwise distances’, SIAM

J. Matrix Anal. Appl. 25, 31–56.
J. R. Shewchuk (1997), ‘Adaptive precision floating-point arithmetic and fast ro-

bust geometric predicates’, Discrete Comput. Geom. 18, 305–363.
R. P. Stanley (1999), Enumerative Combinatorics 2 , Vol. 62 of Cambridge Studies

in Advanced Mathematics, Cambridge University Press.
G. W. Stewart (1993), ‘Updating a rank-revealing ULV decomposition’, SIAM J.

Matrix Anal. Appl. 14, 494–499.
A. Tarski (1951), A Decision Method for Elementary Algebra and Geometry, Uni-

versity of California Press, Berkeley.
J. Taylor (2004), Several Complex Variables with Connections to Algebraic Ge-

ometry and Lie Groups, AMS Series on Graduate Studies in Mathematics,
AMS.

L. G. Valiant (1979), ‘The complexity of computing the permanent’, Theoret. Com-

put. Sci. 8, 189–201.
Q. Ye (2008a), ‘Computing singular values of diagonally dominant matrices to high

relative accuracy’, Math. Comp., to appear.
Q. Ye (2008b), ‘Relative perturbation bounds for eigenvalues of symmetric pos-

itive definite diagonally dominant matrices’, SIAM J. Matrix Anal. Appl.,
to appear.

G. M. Ziegler (1995), Lectures on Polytopes, Vol. 152 of Graduate Texts in Mathe-

matics, Springer, New York.

